Skip to main content

Advertisement

Log in

A review of Titan’s atmospheric phenomena

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Saturn’s satellite Titan is a particularly interesting body in our solar system. It is the only satellite with a dense atmosphere, which is primarily made of nitrogen and methane. It harbours an intricate photochemistry, that populates the atmosphere with aerosols, but that should deplete irreversibly the methane. The observation that methane is not depleted led to the study of Titan’s methane cycle, starting with its atmospheric part. The features that inhabit Titan’s atmosphere can last for timescales varying from year to day. For instance, the reversal of the north–south asymmetry is linked to the 16-year seasonal cycle. Diurnal phenomena have also been observed, like a stratospheric haze enhancement or a possible tropospheric drizzle. Furthermore, clouds have been reported on Titan since 1993. From these first detections and up to now, with the recent inputs from the Cassini–Huygens mission, clouds have displayed a large range of shapes, altitudes, and natures, from the flocky tropospheric clouds at the south pole to the stratiform ones in the northern stratosphere. It is still difficult to compose a clear picture of the physical processes governing these phenomena, even though of lot of different means of observation (spectroscopy, imaging) are available now. We propose here an overview of the phenomena reported between 1993 and 2008 in the low atmosphere of Titan, with indications on the location, altitude, and their characteristics in order to give a perspective of our up-to-date understanding of Titan’s meteorological manifestations. We shall focus mainly on direct imaging observations, from both space- and ground-based facilities. All of these observations, published in more than 30 different refereed papers to date, allow us to build a precise chronology of Titan’s atmospheric changes (including the north–south asymmetry, diurnal and seasonal effects, etc). Since the interpretation is at an early stage, we only briefly mention some of the current theories regarding the features’ nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams MC et al (1996a) ATMOS/ATLAS-3 observations of long-lived tracers and descent in the Antarctic vortex in November 1994. Geophys Res Lett 23: 2341–2344 doi:10.1029/96GL00705

    ADS  Google Scholar 

  • Abrams MC et al (1996b) Trace gas transport in the Arctic vortex inferred from ATMOS ATLAS-2 observations during April 1993. Geophys Res Lett 23: 2345–2348. doi:10.1029/96GL00704

    ADS  Google Scholar 

  • Ádámkovics M, de Pater I, Hartung M, Eisenhauer F, Genezl R, Griffith CA (2005) The 3-dimensionnal distribution of Titan haze from near-infrared integral field spectroscopy. J Geophys Res

  • Ádámkovics M, Wong MH, Laver C, de Pater I (2007) Widespread morning drizzle on Titan. Science 318: 962–965. doi:10.1126/science.1146244

    ADS  Google Scholar 

  • Albert S, Bauerecker S, Boudon V, Brown L, Champion J-P, Lote M, Nikitin A, Quack M (2008) Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm-1. Chem Phys (in Press). Corrected proof. doi:10.1016/j.chemphys.2008.10.019

  • Anderson CM, Chanover NJ, McKay CP, Rannou P, Glenar DA, Hillman JJ (2004) Titan’s haze structure in 1999 from spatially-resolved narrowband imaging surrounding the 0.94 μm methane window. Geophys Res Lett 31: 17

    Google Scholar 

  • Anderson CM, Young EF, Chanover NJ, McKay CP (2008) HST spectral imaging of Titan’s haze and methane profile between 0.6 and 1 μm during the 2000 opposition. Icarus 194: 721–745. doi:10.1016/j.icarus.2007.11.008.

    ADS  Google Scholar 

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. In: Andrews DG, Holton JR, Leovy CB (eds) Middle atmosphere dynamics. Academic Press, New York, pp 489, Price US $34.95

  • Babcock HW (1953) The possibility of compensating astronomical seeing. Publ Astron Soc Pac 65: 229–236

    ADS  Google Scholar 

  • Baines KH et al (2005) The atmospheres of Saturn and Titan in the near-infrared first results of Cassini/vims. Earth Moon Planets 96: 119–147. doi:10.1007/s11038-005-9058-2

    ADS  Google Scholar 

  • Bar-Nun A, Dimitrov V, Tomasko M (2008) Titan’s aerosols: comparison between our model and DISR findings. Planet Space Sci 56: 708–714. doi:10.1016/j.pss.2007.11.014

    ADS  Google Scholar 

  • Barth EL, Rafkin SCR (2007) TRAMS: a new dynamic cloud model for Titan’s methane clouds. Geophys Res Lett 34: 3203. doi:10.1029/2006GL028652

    Google Scholar 

  • Barth EL, Toon OB (2003) Microphysical modeling of ethane ice clouds in titan’s atmosphere. Icarus 162: 94–113

    ADS  Google Scholar 

  • Barth EL, Toon OB (2004) Properties of methane clouds on Titan: results from microphysical modeling. Geophys Res Lett 31: 17

    Google Scholar 

  • Barth EL, Toon OB (2006) Methane, ethane, and mixed clouds in Titan’s atmosphere: properties derived from microphysical modeling. Icarus 182: 230–250. doi:10.1016/j.icarus.2005.12.017

    ADS  Google Scholar 

  • Bauerecker S, Dartois E (2009) Ethane aerosol phase evolution in Titan’s atmosphere. Icarus 199: 564–567. doi:10.1016/j.icarus.2008.09.014

    ADS  Google Scholar 

  • Bernard J-M et al (2006) Reflectance spectra and chemical structure of Titan’s tholins: application to the analysis of Cassini Huygens observations. Icarus 185: 301–307. doi:10.1016/j.icarus.2006.06.004

    ADS  Google Scholar 

  • Bouchez AH (2003) Seasonal trends in Titan’s atmosphere: haze, wind, and clouds, Ph.D. Thesis

  • Bouchez AH, Brown ME (2005) Statistics of Titan’s south polar tropospheric clouds. Astrophys J 618: L53–L56

    ADS  Google Scholar 

  • Boudon V, Rey M, Loete M (2006) The vibrational levels of methane obtained from analyses of high-resolution spectra. J Quant Spectrosc Radiat Transf 98: 394–404

    ADS  Google Scholar 

  • Bratsolis E, Sigelle M (2001) A spatial regularization method preserving local photometry for Richardson-Lucy restoration. Astron Astrophys 375: 1120–1128

    ADS  Google Scholar 

  • Brown ME (2005) The seasonal hydrological cycle on Titan. In: Proceedings of the conference “Titan after the Huygens and First Cassini Encounters”, Crete, Greece, 30 May–3 June 2005. http://www.lpl.arizona.edu/titanconference/index.html

  • Brown ME (2000) The solar system up close: AO spectroscopy from Palomar. Bull Am Astron Soc 32: 1508

    ADS  Google Scholar 

  • Brown ME, Bouchez AH, Griffith CA (2002) Direct detection of variable tropospheric clouds near Titan’s south pole. Nature 420: 795–797

    ADS  Google Scholar 

  • Brown ME, Schaller EL, Roe HG, Chen C, Roberts J, Brown RH, Baines KH, Clark RN (2009) Discovery of lake-effect clouds on Titan. Geophys Res Lett 36: 1103. doi:10.1029/2008GL035964

    Google Scholar 

  • Brown RH et al (2006) Observations in the Saturn system during approach and orbital insertion, with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Astron Astrophys 446: 707–716. doi:10.1051/0004-6361:20053054

    ADS  Google Scholar 

  • Cabane M, Chassefiere E, Israel G (1992) Formation and growth of photochemical aerosols in Titan’s atmosphere. Icarus 96: 176–189

    ADS  Google Scholar 

  • Caldwell J et al (1992) Titan: evidence for seasonal change—a comparison of hubble Space telescope and voyager images. Icarus 97: 1–9

    ADS  Google Scholar 

  • Chanover NJ, Anderson CM, McKay CP, Rannou P, Glenar DA, Hillman JJ, Blass WE (2003) Probing Titan’s lower atmosphere with acousto-optic tuning. Icarus 163: 150–163

    ADS  Google Scholar 

  • Coll P, Jolly A, Bernard J-M, Ramirez SI, da Silva A, Navarro-Gonzalez R, Lafait J, Rannou P, Raulin F (2003) Optical properties of Titan’s aerosol analogues (in the 200 nm–2.5 μm range). In: EGS–AGU–EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6–11 April 2003, abstract #12426, pp 12,426

  • Combes M, Vapillon L, Gendron E, Coustenis A, Lai O, Wittemberg R, Sirdey R (1997) Spatially resolved images of Titan by means of adaptive optics. Icarus 129: 482–497

    ADS  Google Scholar 

  • Conan JM, Fusco T, Mugnier L, Kesralé E, Michau V (1998) Deconvolution of adaptive optics images with imprecise knowledge of the point spread function: results on astronomical objects. In: Astronomy with adaptive optics: present results and future programs, ESO/OSA Workshop, September 1998, Sonthofen, Germany

  • Courtin R (1982) The spectrum of Titan in the far-infrared and microwave regions. Icarus 51: 466–475

    ADS  Google Scholar 

  • Courtin R, Gautier D, McKay CP (1995) Titan’s thermal emission spectrum: reanalysis of the Voyager infrared measurements. Icarus 114: 144–162

    ADS  Google Scholar 

  • Coustenis A, Bezard B (1995) Titan’s atmosphere from Voyager infrared observations. 4: latitudinal variations of temperature and composition. Icarus 115: 126–140

    ADS  Google Scholar 

  • Coustenis A, Lellouch E, Maillard JP, McKay CP (1995) Titan’s surface: composition and variability from the near-infrared albedo. Icarus 118: 87–104

    ADS  Google Scholar 

  • Coustenis A, Hirtzig M, Gendron E, Drossart P, Lai O, Combes M, Negrão A (2005) Maps of Titan’s surface from 1 to 2.5 μm. Icarus 177: 89–105. doi:10.1016/j.icarus.2005.03.012

    ADS  Google Scholar 

  • Coustenis A et al (2001) Images of Titan at 1.3 and 1.6 μm with Adaptive optics at the CFHT. Icarus 154: 501–515

    ADS  Google Scholar 

  • Coustenis A et al (2007) The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189: 35–62. doi:10.1016/j.icarus.2006.12.022

    ADS  Google Scholar 

  • Crespin A, Lebonnois S, Vinatier S, Bézard B, Coustenis A, Teanby NA, Achterberg RK, Rannou P, Hourdin F (2008) Diagnostics of Titan’s stratospheric dynamics using Cassini/CIRS data and the 2-dimensional IPSL circulation model. Icarus 197: 556–571. doi:10.1016/j.icarus.2008.05.010

    ADS  Google Scholar 

  • de Kok R, Irwin PGJ, Teanby NA (2008) Condensation in Titan’s stratosphere during polar winter. Icarus 197: 572–578. doi:10.1016/j.icarus.2008.05.024

    ADS  Google Scholar 

  • de Pater I et al (2005) Keck observations of Titan during probe entry and during the days following touch-down. In: EUROPLANET N3 activity Kick-off meeting, Graz, 8 March. http://europlanet.oeaw.ac.at/N3_Meeting_09032005.html

  • de Pater I, Ádámkovics M, Bouchez AH, Brown ME, Gibbard SG, Marchis F, Roe HG, Schaller EL, Young E (2006) Titan imagery with Keck adaptive optics during and after probe entry. J Geophys Res (Planets) 111: 7. doi:10.1029/2005JE002620

    Google Scholar 

  • Evans KF (1998) The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J Atmos Sci 55: 429–446. doi:10.1175/1520-0469(1998)055

    ADS  Google Scholar 

  • Fink U, Larson HP (1979) The infrared spectra of Uranus, Neptune, and Titan from 0.8 to 2.5 microns. Astrophys J 233: 1021–1040

    ADS  Google Scholar 

  • Flasar FM (1983) Oceans on Titan? Science 221: 55–57

    ADS  Google Scholar 

  • Flasar FM (1998a) The dynamic meteorology of Titan. Planet Space Sci 46: 1125–1147

    ADS  Google Scholar 

  • Flasar FM (1998b) The composition of Titan atmosphere: a meteorological perspective. Planet Space Sci 46: 1109–1124

    ADS  Google Scholar 

  • Flasar FM, Achterberg RK (2008) The structure and dynamics of Titan’s middle atmosphere. Philos Trans R Soc A Math Phys Eng Sci 367(1889): 649–664. doi:10.1098/rsta.2008.0242

    ADS  Google Scholar 

  • Flasar FM, Conrath BJ (1990) Titan’s stratospheric temperatures–a case for dynamical inertia? Icarus 85: 346–354

    ADS  Google Scholar 

  • Flasar FM, Samuelson RE, Conrath BJ (1981) Titan’s atmosphere–temperature and dynamics. Nature 292: 693–698

    ADS  Google Scholar 

  • Folkner WM et al (2006) Winds on Titan from ground-based tracking of the Huygens probe. J Geophys Res (Planets) 111: 7. doi:10.1029/2005JE002649

    Google Scholar 

  • Gendron E et al (2004) VLT/NACO adaptive optics imaging of Titan. Astron Astrophys 417: L21–L24

    ADS  Google Scholar 

  • Gibbard SG, Macintosh B, Gavel D, Max CE, de Pater I, Ghez AM, Young EF, McKay CP (1999) Titan: high-resolution speckle images from the keck telescope. Icarus 139: 189–201

    ADS  Google Scholar 

  • Gibbard SG, de Pater I, Macintosh BA, Grossman A, Adamkovics M (2003) Spatially-resolved 2 micron spectroscopy of Titan from the W.M. Keck telescope. In: AAS/Division for Planetary Sciences Meeting Abstracts 35

  • Gibbard SG, de Pater I, Macintosh BA, Roe HG, Max CE, Young EF, McKay CP (2004a) Titan’s 2 μm surface albedo and haze optical depth in 1996–2004. Geophys Res Lett 31: 17

    Google Scholar 

  • Gibbard SG, Macintosh B, Gavel D, Max CE, de Pater I, Roe HG, Ghez AM, Young EF, McKay CP (2004b) Speckle imaging of Titan at 2 microns: surface albedo, haze optical depth, and tropospheric clouds 1996–1998. Icarus 169: 429–439

    ADS  Google Scholar 

  • Goody R, West R, Chen L, Crisp D (1989) The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J Quant Spectrosc Radiat Transf 42: 539–550. doi:10.1016/0022-4073(89)90044-7

    ADS  Google Scholar 

  • Griffith CA, Owen T, Wagener R (1991) Titan’s surface and troposphere, investigated with ground-based, near-infrared observations. Icarus 93: 362–378

    ADS  Google Scholar 

  • Griffith CA, Owen T, Miller GA, Geballe T (1998) Transient clouds in Titan’s lower atmosphere. Nature 395: 575–578

    ADS  Google Scholar 

  • Griffith CA, Hall JL, Geballe TR (2000) Detection of daily clouds on Titan. Science 290: 509–513

    ADS  Google Scholar 

  • Griffith CA, Owen T, Geballe TR, Rayner J, Rannou P (2003) Evidence for the exposure of water ice on Titan’s surface. Science 300: 628–630

    ADS  Google Scholar 

  • Griffith CA, McKay CP, Ferri F (2008) Titan’s tropical storms in an evolving atmosphere. Astrophys J Lett 687: L41–L44. doi:10.1086/593117

    ADS  Google Scholar 

  • Griffith CA et al (2005) The evolution of Titan’s mid-latitude clouds. Science 310: 474–477. doi:10.1126/science.1117702

    ADS  Google Scholar 

  • Griffith CA et al (2006) Evidence for a polar ethane cloud on Titan. Science 313: 1620–1622. doi:10.1126/science.1128245

    ADS  Google Scholar 

  • Hinson DP (1983) Radio scintillations observed during atmospheric occultations of Voyager: internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn, Ph.D. Thesis

  • Hirtzig M (2005) Etude de Titan dans l’Infrarouge Proche par Spectro-Imagerie couplée à l’Optique Adaptative, Ph.D. Thesis

  • Hirtzig M, Coustenis A, Lai O, Emsellem E, Pecontal-Rousset A, Rannou P, Negrão A, Schmitt B (2005) Near-infrared study of Titan’s resolved disk in spectro-imaging with CFHT/OASIS. Planet Space Sci 53: 535–556. doi:10.1016/j.pss.2004.08.006

    ADS  Google Scholar 

  • Hirtzig M, Coustenis A, Gendron E, Drossart P, Hartung M, Negrão A, Rannou P, Combes M (2007) Titan: Atmospheric and surface features as observed with nasmyth adaptive optics system near-infrared imager and spectrograph at the time of the Huygens mission. J Geophys Res (Planets) 112: 2. doi:10.1029/2005JE002650

    Google Scholar 

  • Hirtzig M et al (2006) Monitoring atmospheric phenomena on Titan. Astron Astrophys 456: 761–774. doi:10.1051/0004-6361:20053381

    ADS  Google Scholar 

  • Hourdin F, Talagrand O, Sadourny R, Courtin R, Gautier D, McKay CP (1995) Numerical simulation of the general circulation of the atmosphere of Titan. Icarus 117: 358–374

    ADS  Google Scholar 

  • Hourdin F, Lebonnois S, Luz D, Rannou P (2004) Titan’s stratospheric composition driven by condensation and dynamics. J Geophys Res (Planets) 109(E18): 12,005

    Google Scholar 

  • Hubbard WB, Hunten DM, Reitsema HJ, Brosch N, Nevo Y, Carreira E, Rossi F, Wasserman LH (1990) Results for Titan’s atmosphere from its occultation of 28 Sagittarii. Nature 343: 353–355

    ADS  Google Scholar 

  • Hubbard WB et al (1993) The occultation of 28 SGR by Titan. Astron Astrophys 269: 541–563

    ADS  Google Scholar 

  • Hueso R, Sánchez-Lavega A (2006) Methane storms on Saturn’s moon Titan. Nature 442: 428–431. doi:10.1038/nature04933

    ADS  Google Scholar 

  • Hunten DM, Tomasko MG, Flasar FM, Samuelson RE, Strobel DF, Stevenson DJ (1984) Titan, pp 671–759, Saturn

  • Hutzell WT, McKay CP, Toon OB (1993) Effects of time-varying haze production on Titan’s geometric albedo. Icarus 105: 162–174

    ADS  Google Scholar 

  • Hutzell WT, McKay CP, Toon OB, Hourdin F (1996) Simulations of Titan’s brightness by a two-dimensional haze model. Icarus 119: 112–129

    ADS  Google Scholar 

  • Irwin PGJ, Sromovsky LA, Strong EK, Sihra K, Teanby NA, Bowles N, Calcutt SB, Remedios JJ (2006) Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm1 and implications for interpretation of outer planet spectra. Icarus 181: 309–319. doi:10.1016/j.icarus.2005.11.003

    ADS  Google Scholar 

  • Jacquinet-Husson N et al (2005) The 2003 edition of the GEISA/IASI spectroscopic database. J Quant Spectrosc Radiat Transf 95: 429–467

    ADS  Google Scholar 

  • Karkoschka E (1998) Methane, ammonia, and temperature measurements of the jovian planets and Titan from CCD-spectrophotometry. Icarus 133: 134–146

    ADS  Google Scholar 

  • Karkoschka E, Tomasko MG (2009) Rain and dewdrops on titan based on in situ imaging. Icarus 199: 442–448. doi:10.1016/j.icarus.2008.09.020

    ADS  Google Scholar 

  • Karkoschka E, Tomasko MG, Doose LR, See C, McFarlane EA, Schröder SE, Rizk B (2007) DISR imaging and the geometry of the descent of the Huygens probe within Titan’s atmosphere. Planet Space Sci 55: 1896–1935. doi:10.1016/j.pss.2007.04.019

    ADS  Google Scholar 

  • Khare BN et al (1984) The organic aerosols of Titan. Advances in Space Research 4: 59–68

    ADS  Google Scholar 

  • Kim SJ, Trafton LM, Geballe TR (2008) No evidence of morning or large-scale drizzle on Titan. Astrophys J Lett 679: L53–L56. doi:10.1086/588839

    ADS  Google Scholar 

  • Kondo K, Ichioka Y, Suzuki T (1977) Image restoration by Wiener filtering in the presence of signal-dependant noise. Appl Opt 16: 2554–2558

    ADS  Google Scholar 

  • Kostiuk T, Fast KE, Livengood TA, Hewagama T, Goldstein JJ, Espenak F, Buhl D (2001) Direct measurement of winds of Titan. Geophys Res Lett 28: 2361–2364

    ADS  Google Scholar 

  • Kostiuk T et al (2005) Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion. Geophys Res Lett 32: 22,205. doi:10.1029/2005GL023897

    Google Scholar 

  • Kostiuk T et al (2006) Stratospheric global winds on Titan at the time of Huygens descent. J Geophys Res (Planets) 111: 7. doi:10.1029/2005JE002630

    Google Scholar 

  • Kuiper GP (1944) Titan: a satellite with an atmosphere. Astrophys J 100: 378

    ADS  Google Scholar 

  • Labeyrie A (1970) Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in Star Images. Astron Astrophys 6: 85

    ADS  Google Scholar 

  • Lebonnois S, Toublanc D, Hourdin F, Rannou P (2001) Seasonal variations of Titan’s atmospheric composition. Icarus 152: 384–406

    ADS  Google Scholar 

  • Lebonnois S, Hourdin F, Rannou P, Luz D, Toublanc D (2003) Impact of the seasonal variations of composition on the temperature field of Titan’s stratosphere. Icarus 163: 164–174

    ADS  Google Scholar 

  • Lellouch E, Coustenis A, Gautier D, Raulin F, Dubouloz N, Frere C (1989) Titan’s atmosphere and hypothesized ocean—a reanalysis of the Voyager 1 radio-occultation and IRIS 7.7-micron data. Icarus 79: 328–349

    ADS  Google Scholar 

  • Lemmon MT, Karkoschka E, Tomasko M (1993) Titan’s rotation—surface feature observed. Icarus 103: 329–332

    ADS  Google Scholar 

  • Lemmon MT, Karkoschka E, Tomasko M (1995) Titan’s rotational light-curve. Icarus 113: 27–38

    ADS  Google Scholar 

  • Lindal GF, Wood GE, Hotz HB, Sweetnam DN, Eshleman VR, Tyler GL (1983) The atmosphere of Titan—an analysis of the Voyager 1 radio occultation measurements. Icarus 53: 348–363

    ADS  Google Scholar 

  • Lockwood GW, Lutz BL, Thompson DT (1979) Spectrophotometry of temporal and spatial variations of the atmospheres of the outer planets and Titan. Bull Am Astron Soc 11: 554

    ADS  Google Scholar 

  • Lorenz RD (1993) The life, death and afterlife of a raindrop on Titan. Planet Space Sci 41: 647–655

    ADS  Google Scholar 

  • Lorenz RD (2002) Thermodynamics of geysers: application to Titan. Icarus 156: 176–183

    ADS  Google Scholar 

  • Lorenz RD, Smith PH, Lemmon MT, Karkoschka E, Lockwood GW, Caldwell J (1997) Titan’s north–south asymmetry from HST and Voyager imaging: comparison with models and ground-based photometry. Icarus 127: 173–189

    ADS  Google Scholar 

  • Lorenz RD, Lemmon MT, Simth Ph (1999a) Evidence for clouds on Titan from HST WFPC-2. AAS/Division for Planetary Sciences Meeting 31

  • Lorenz RD, Lemmon MT, Smith PH, Lockwood GW (1999b) Seasonal change on Titan observed with the hubble space telescope WFPC-2. Icarus 142: 391–401

    ADS  Google Scholar 

  • Lorenz RD, Lemmon MT, Smith PH (2000) Variable and constant features on Titan from HST. In: Highlights of planetary exploration from space and from Earth, 24th meeting of the IAU, Joint Discussion 12, August 2000, Manchester, England, 12

  • Lorenz RD, Young EF, Lemmon MT (2001) Titan’s smile and collar: HST observations of seasonal change 1994–2000. Geophys Res Lett 28: 4453–

    ADS  Google Scholar 

  • Lorenz RD, Smith PH, Lemmon MT (2004) Seasonal change in Titan’s haze 1992-2002 from hubble space telescope observations. Geophys Res Lett 31: 10702–

    ADS  Google Scholar 

  • Lorenz RD, Griffith CA, Lunine JI, McKay CP, Rennò NO (2005) Convective plumes and the scarcity of Titan’s clouds. Geophys Res Lett 32: 1201–

    Google Scholar 

  • Lorenz RD, Lemmon MT, Smith PH (2006) Seasonal evolution of Titan’s dark polar hood: midsummer disappearance observed by the Hubble Space Telescope. Mon Notices R Astron Soc 369(4): 1683–1687

    ADS  Google Scholar 

  • Lorenz RD, Zarnecki JC, Towner MC, Leese MR, Ball AJ, Hathi B, Hagermann A, Ghafoor NAL (2007) Descent motions of the Huygens probe as measured by the Surface Science Package (SSP): turbulent evidence for a cloud layer. Planet Space Sci 55: 1936–1948. doi:10.1016/j.pss.2007.04.007

    ADS  Google Scholar 

  • Lorenz RD, Stiles BW, Kirk RL, Allison MD, Persidel Marmo P, Iess L, Lunine JI, Ostro SJ, Hensley S (2008) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319: 1649. doi:10.1126/science.1151639

    ADS  Google Scholar 

  • Lorenz RD, West RD, Johnson WTK (2008) Cassini RADAR constraint on Titan’s winter polar precipitation. Icarus 195: 812–816. doi:10.1016/j.icarus.2007.12.025

    ADS  Google Scholar 

  • Lunine JI, Atreya SK (2008) The methane cycle on Titan. Nature Geoscience 1(3): 159–163. doi:10.1038/ngeo125

    Google Scholar 

  • Luz D, Hourdin F (2003) Latitudinal transport by barotropic waves in Titan’s stratosphere. I. General properties from a horizontal shallow-water model. Icarus 166: 328–342

    ADS  Google Scholar 

  • Luz D, Hourdin F, Rannou P, Lebonnois S (2003) Latitudinal transport by barotropic waves in Titan’s stratosphere. II. Results from a coupled dynamics-microphysics-photochemistry GCM. Icarus 166:343–358. doi:10.1016/S0019-1035(03)00263-X. http://adsabs.harvard.edu/abs/2003Icar..166..343L. Provided by the SAO/NASA Astrophysics Data System

    Google Scholar 

  • Luz D et al (2005) Characterization of zonal winds in the stratosphere of Titan with UVES. Icarus 179: 497–510. doi:10.1016/j.icarus.2005.07.021

    ADS  Google Scholar 

  • Magain P, Courbin F, Sohy S (1998) Deconvolution with correct sampling. Astrophys J 494: 472. doi:10.1086/305187

    ADS  Google Scholar 

  • Matthews K, Ghez AM, Weinberger AJ, Neugebauer G (1996) The first diffraction-limited images from the WM Keck Telescope. Publ Astron Soc Pac 108: 615–

    ADS  Google Scholar 

  • Mayo LA, Samuelson RE (2005) Condensate clouds in Titan’s north polar stratosphere. Icarus 176: 316–330. doi:10.1016/j.icarus.2005.01.020

    ADS  Google Scholar 

  • McKay CP, Pollack JB, Courtin R (1989) The thermal structure of Titan’s atmosphere. Icarus 80: 23–53

    ADS  Google Scholar 

  • Meier R, Smith BA, Owen TC, Terrile RJ (2000) The surface of Titan from NICMOS observations with the Hubble Space Telescope. Icarus 145: 462–473

    ADS  Google Scholar 

  • Mitchell JL, Pierrehumbert RT, Frierson DM, Caballero R (2006) The dynamics behind Titan’s methane clouds. Proc Natl Acad Sci USA 103: 18421–18426

    ADS  Google Scholar 

  • Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186: 385–394. doi:10.1016/j.icarus.2006.09.004

    ADS  Google Scholar 

  • Moreno R, Marten A, Hidayat T (2005) Interferometric measurements of zonal winds on Titan. Astron Astrophys 437: 319–328. doi:10.1051/0004-6361:20042117

    ADS  Google Scholar 

  • Negrão A (2007) The characterisation of Titan’s lower atmosphere and surface from near-infrared spectra, Ph.D. Thesis

  • Negrão A, Coustenis A, Lellouch E, Maillard J-P, Rannou P, Schmitt B, McKay CP, Boudon V (2006) Titan’s surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra. Planet Space Sci 54: 1225–1246. doi:10.1016/j.pss.2006.05.031

    ADS  Google Scholar 

  • Negrão A, Hirtzig M, Coustenis A, Gendron E, Drossart P, Rannou P, Combes M, Boudon V (2007) The 2-μm spectroscopy of Huygens probe landing site on Titan with very large telescope/nasmyth adaptive optics system near-infrared imager and spectrograph. J Geophys Res (Planets) 112: 2. doi:10.1029/2005JE002651

    Google Scholar 

  • Porco CC et al (2005) Imaging of Titan from the Cassini spacecraft. Nature 434: 159–168

    ADS  Google Scholar 

  • Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation, D. Reidel, Dordrecht, p 714

  • Rages K, Pollack JB (1983) Vertical distribution of scattering hazes in Titan’s upper atmosphere. Icarus 55: 50–62

    ADS  Google Scholar 

  • Rannou P, Hourdin F, McKay CP (2002) A wind origin for Titan’s haze structure. Nature 418: 853–856

    ADS  Google Scholar 

  • Rannou P, McKay CP, Lorenz RD (2003) A model of Titan’s haze of fractal aerosols constrained by multiple observations. Planet Space Sci 51: 963–976

    ADS  Google Scholar 

  • Rannou P, Hourdin F, McKay CP, Luz D (2004) A coupled dynamics-microphysics model of Titan’s atmosphere. Icarus 170: 443–462

    ADS  Google Scholar 

  • Rannou P, Lebonnois S, Hourdin F, Luz D (2005) Titan atmosphere database. Adv Space Res 36: 2194–2198. doi:10.1016/j.asr.2005.09.041

    ADS  Google Scholar 

  • Rannou P, Montmessin F, Hourdin F, Lebonnois S (2006) The Latitudinal distribution of clouds on Titan. Science 311: 201–205. doi:10.1126/science.1118424

    ADS  Google Scholar 

  • Richardson MI, Toigo AD, Newman CE (2007) PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J Geophys Res 112: E09,001. doi:10.1029/2006JE002825

    Google Scholar 

  • Rodriguez S et al (2009) Cloud activity on Titan: seasonal changes and tidal effects. Nature

  • Roe HG, de Pater I, Gibbard SG, Macintosh B, Max CE, McKay CP (2000) Near- and mid-infrared resolved imaging of Titan’s atmosphere. Bull Am Astron Soc 32: 1023

    ADS  Google Scholar 

  • Roe HG, de Pater I, Macintosh BA, Gibbard SG, Max CE, McKay CP (2002a) NOTE: Titan’s atmosphere in late southern spring observed with adaptive optics on the WM Keck II 10-meter telescope. Icarus 157: 254–258

    ADS  Google Scholar 

  • Roe HG, de Pater I, Macintosh BA, McKay CP (2002b) Titan’s clouds from Gemini and Keck adaptive optics imaging. Astrophys J 581: 1399–1406

    ADS  Google Scholar 

  • Roe HG, Bouchez AH, Trujillo CA, Schaller EL, Brown ME (2005a) Discovery of temperate latitude clouds on Titan. Astrophys J 618: L49–L52

    ADS  Google Scholar 

  • Roe HG, Brown ME, Schaller EL, Bouchez AH, Trujillo CA (2005) Geographic control of Titan’s mid-latitude clouds. Science 310: 477–479. doi:10.1126/science.1116760

    ADS  Google Scholar 

  • Roos-Serote M (2004) The Changing Face of Titan’s Haze: Is it all Dynamics? Space Sci Rev 116(1):201–210. doi:10.1007/s11214-005-1956-0. http://www.springerlink.com/content/n2k18248t7303851

    Google Scholar 

  • Rothman LS et al (2005) The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 96: 139–204

    ADS  Google Scholar 

  • Roush TL, Dalton JB (2004) Reflectance spectra of hydrated Titan tholins at cryogenic temperatures and implications for compositional interpretation of red objects in the outer solar system. Icarus 168: 158–162. doi:10.1016/j.icarus.2003.11.001

    ADS  Google Scholar 

  • Sagan C, Thompson WR (1982) Production and condensation of organic gases in the atmosphere of Titan. Bull Am Astron Soc 14: 714–

    ADS  Google Scholar 

  • Sagan C, Thompson WR (1984) Production and condensation of organic gases in the atmosphere of Titan. Icarus 59: 133–161

    ADS  Google Scholar 

  • Saint-PéO, Combes M, Rigaut F, Tomasko M, Fulchignoni M (1993) Demonstration of adaptive optics for resolved imagery of solar system objects—preliminary results on Pallas and Titan. Icarus 105: 263–

    ADS  Google Scholar 

  • Samuelson RE (1983) Radiative equilibrium model of Titan’s atmosphere. Icarus 53: 364–387. doi:10.1016/0019-1035(83)90156-2

    ADS  Google Scholar 

  • Samuelson RE, Mayo LA (1997) Steady-state model for methane condensation in Titan’s troposphere. Planet Space Sci 45: 949–958

    ADS  Google Scholar 

  • Samuelson RE, Mayo LA, Knuckles MA, Khanna RJ (1997a) C 4 N 2 ice in Titan’s north polar stratosphere. Planet Space Sci 45: 941–948

    ADS  Google Scholar 

  • Samuelson RE, Nath NR, Borysow A (1997b) Gaseous abundances and methane supersaturation in Titan’s troposphere. Planet Space Sci 45: 959–980

    ADS  Google Scholar 

  • Schaller EL, Brown ME, Bouchez AH, Roe HG , Trujillo CA (2004) Continuous monitoring of Titan for large cloud outbursts. In: AAS/Division for Planetary Sciences Meeting Abstracts 36

  • Schaller EL, Brown ME, Roe HG, Bouchez AH, Trujillo CA (2005) Cloud activity on Titan during the Cassini mission. In: 36th Annual lunar and planetary science conference, p 1989

  • Schaller EL, Brown ME, Roe HG, Bouchez AH (2006) A large cloud outburst at Titan’s south pole. Icarus 182: 224–229. doi:10.1016/j.icarus.2005.12.021

    ADS  Google Scholar 

  • Schaller EL, Brown ME, Roe HG, Bouchez AH, Trujillo CA (2006) Dissipation of Titan’s south polar clouds. Icarus 184: 517–523. doi:10.1016/j.icarus.2006.05.025

    ADS  Google Scholar 

  • Sicardy B et al (1990) Probing Titan’s atmosphere by stellar occultation. Nature 343: 350–353

    ADS  Google Scholar 

  • Sicardy B et al (1999) The Structure of Titan’s Stratosphere from the 28 Sgr Occultation. Icarus 142: 357–390

    ADS  Google Scholar 

  • Sicardy B et al (2006) The two Titan stellar occultations of 14 November 2003. J Geophys Res (Planets) 111: 11. doi:10.1029/2005JE002624

    Google Scholar 

  • Smith BA et al (1981) Encounter with Saturn—Voyager 1 imaging science results. Science 212: 163–191

    ADS  Google Scholar 

  • Smith BA et al (1982) A new look at the Saturn system—the Voyager 2 images. Science 215: 504–537

    ADS  Google Scholar 

  • Smith PH, Lemmon MT, Lorenz RD, Sromovsky LA, Caldwell JJ, Allison MD (1996) Titan’s surface, revealed by HST imaging. Icarus 119: 336–349

    ADS  Google Scholar 

  • Sromovsky LA, Suomi VE, Pollack JB, Krauss RJ, Limaye SS, Owen T, Revercomb HE, Sagan C (1981) Implications of Titan’s north–south brightness asymmetry. Nature 292: 698–702

    ADS  Google Scholar 

  • Stevenson DJ, Potter BE (1986) Titan’s latitudinal temperature distribution and seasonal cycle. Geophys Res Lett 13: 93–96. doi:10.1029/GL013i002p00093

    ADS  Google Scholar 

  • Stiles BW et al (2008) Determining Titan’s spin state from Cassini radar images. Astron J 135: 1669–1680. doi:10.1088/0004-6256/135/5/1669

    ADS  Google Scholar 

  • Stofan ER et al (2007) The lakes of Titan. Nature 445: 61–64. doi:10.1038/nature05438

    ADS  Google Scholar 

  • Strobel DF (2006) Gravitational tidal waves in Titan’s upper atmosphere. Icarus 182: 251–258. doi:10.1016/j.icarus.2005.12.015

    ADS  Google Scholar 

  • Tokano T (2005) Meteorological assessment of the surface temperatures on Titan: constraints on the surface type. Icarus 173: 222–242

    ADS  Google Scholar 

  • Tokano T (2008) Dune-forming winds on Titan and the influence of topography. Icarus 194: 243–262. doi:10.1016/j.icarus.2007.10.007

    ADS  Google Scholar 

  • Tokano T (2008) The dynamics of Titan’s troposphere. Philos Trans R Soc A Math Phys Eng Sci 367(1889): 633–648. doi:10.1098/rsta.2008.0163

    ADS  Google Scholar 

  • Tokano T, Neubauer FM, Laube M, McKay CP (1999) Seasonal variation of Titan atmospheric structuresimulated by a general circulation model. Planet Space Sci 47: 493–520

    ADS  Google Scholar 

  • Tokano T, Ferri F, Colombatti G, Mäkinen T, Fulchignoni M (2006) Titan’s planetary boundary layer structure at the Huygens landing site. J Geophys Res (Planets) 111: 8007. doi:10.1029/2006JE002704

    Google Scholar 

  • Tokano T, McKay CP, Neubauer FM, Atreya SK, Ferri F, Fulchignoni M, Niemann HB (2006) Methane drizzle on Titan. Nature 442: 432–435. doi:10.1038/nature04948

    ADS  Google Scholar 

  • Tomasko MG, Bézard B, Doose L, Engel S, Karkoschka E (2008) Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan’s atmosphere. Planet Space Sci 56: 624–647. doi:10.1016/j.pss.2007.10.009

    ADS  Google Scholar 

  • Tomasko MG, Doose L, Engel S, Dafoe LE, West R, Lemmon M, Karkoschka E, See C (2008) A model of Titan’s aerosols based on measurements made inside the atmosphere. Planet Space Sci 56: 669–707. doi:10.1016/j.pss.2007.11.019

    ADS  Google Scholar 

  • Tomasko MG et al (2005) Results from the Descent Imager/Spectral Radiometer (DISR) Instrument on the Huygens probe of Titan. Nature 438: 765–778. doi:10.1038/nature04126

    ADS  Google Scholar 

  • Toon OB, McKay CP, Courtin R, Ackerman TP (1988) Methane rain on Titan. Icarus 75: 255–284

    ADS  Google Scholar 

  • Turtle EP, Perry JE, McEwen AS, DelGenio AD, Barbara J, West RA, Dawson DD, Porco CC (2009) Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36: 2204. doi:10.1029/2008GL036186

    Google Scholar 

  • Walterscheid RL, Schubert G (2006) A tidal explanation for the Titan haze layers. Icarus 183: 471–478. doi:10.1016/j.icarus.2006.03.001

    ADS  Google Scholar 

  • Young EF, Rannou P, McKay CP, Griffith CA, Noll K (2002) A three-dimensional map of Titan’s tropospheric haze distribution based on Hubble Space Telescope imaging. Astrophys J 123: 3473–3486

    ADS  Google Scholar 

  • Yung YL (1987) An update of nitrile photochemistry on Titan. Icarus 72: 468–472

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Hirtzig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirtzig, M., Tokano, T., Rodriguez, S. et al. A review of Titan’s atmospheric phenomena. Astron Astrophys Rev 17, 105–147 (2009). https://doi.org/10.1007/s00159-009-0018-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-009-0018-0

Keywords

Navigation