Skip to main content
Log in

A new global sensitivity measure based on derivative-integral and variance decomposition and its application in structural crashworthiness

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

For the traditional variance-based global sensitivity analysis, the total effect of individual variable commonly involves the interactions with other variables. To further decompose the interactive effects, this paper proposes a new global sensitivity measure based on derivative-integral and variance decomposition. Firstly, the first-order sensitivity index only relating to individual variable and the high-order sensitivity indices involving with other interactive variables are analyzed through analysis of variance (ANOVA) representation. Then, the partial derivatives of high-order interaction terms of ANOVA representation with respect to individual variable and the integrals of the squares of partial derivative functions are calculated in the whole variable space. Consequently, to measure the contribution of individual variable to each high-order interaction term, the ratio of the square root of each integral to their sum is defined as the sensitivity weight factor. A high-order sensitivity index can be further decomposed into a series of sensitivity sub-indices by using the defined sensitivity weight factors. Accordingly, a new global sensitivity measure for individual variable is proposed by combining the first-order sensitivity index with the decomposed sensitivity sub-indices. Finally, three numerical examples and an engineering application are investigated to demonstrate the reasonability and superiority of the proposed sensitivity measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aliş ÖF, Rabitz H (2001) Efficient implementation of high dimensional model representations. J Math Chem 29(2):127–142

    Article  MathSciNet  MATH  Google Scholar 

  • Arwade S, Moradi M, Louhghalam A (2010) Variance decomposition and global sensitivity for structural systems. Eng Struct 32(1):1–10

    Article  Google Scholar 

  • Blatman G, Sudret B (2010) Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Syst Saf 95(11):1216–1229

    Article  Google Scholar 

  • Blonigan PJ, Wang Q (2014) Least squares shadowing sensitivity analysis of a modified Kuramoto–Sivashinsky equation. Chaos, Solitons Fractals 64:16–25

    Article  MathSciNet  MATH  Google Scholar 

  • Borgonovo E, Plischke E (2016) Sensitivity analysis: a review of recent advances. Eur J Oper Res 248(3):869–887

    Article  MathSciNet  MATH  Google Scholar 

  • Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environ Model Softw 22(10):1509–1518

    Article  Google Scholar 

  • Castillo E, Conejo AJ, Mínguez R, Castillo C (2006) A closed formula for local sensitivity analysis in mathematical programming. Eng Optim 38(1):93–112

    Article  MathSciNet  Google Scholar 

  • Chen H, Chen H, Wang L (2014) Analysis of vehicle seat and research on structure optimization in front and rear impact. World J Eng Technol 02(2):92–99

    Article  MathSciNet  Google Scholar 

  • Chen W, Jin R, Sudjianto A (2015) Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty. J Mech Des 127(5):875–886

    Article  Google Scholar 

  • Christopher Frey H, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Anal 22(3):553–578

    Article  Google Scholar 

  • Confalonieri RG, Bellocchi S, Bregaglio M, Donatelli M, Acutis M (2010) Comparison of sensitivity analysis techniques: a case study with the rice model WARM. Ecol Model 221(16):1897–1906

    Article  Google Scholar 

  • Dai C, Li H, Zhang D (2014) Efficient and accurate global sensitivity analysis for reservoir simulations by use of probabilistic collocation method. SPE J 19(04):621–635

    Article  Google Scholar 

  • Delen D, Tomak L, Topuz K, Eryarsoy E (2017) Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods. J Transp Health 4:118–131

    Article  Google Scholar 

  • Haaker MPR, Verheijen PJT (2004) Local and global sensitivity analysis for a reactor design with parameter uncertainty. Chem Eng Res Des 82(5):591–598

    Article  Google Scholar 

  • Huang X, Wang J (2011) Lightweight vehicle control-oriented modeling and payload parameter sensitivity analysis. IEEE Trans Veh Technol 60(5):1999–2011

    Article  Google Scholar 

  • Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Dellino G., Meloni C. (eds) Uncertainty Management in Simulation-Optimization of Complex Systems. Operations Research/Computer Science Interfaces Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7547-8_5

    Chapter  Google Scholar 

  • Ishigami T, Homma T (1990) An importance quantification technique in uncertainty analysis for computer models. [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis. IEEE, 1990:398-403. https://doi.org/10.1109/ISUMA.1990.151285

  • Jansson T, Nilsson L, Redhe M (2003) Using surrogate models and response surfaces in structural optimization–with application to crashworthiness design and sheet metal forming. Struct Multidiscip Optim 25(2):129–140

    Article  Google Scholar 

  • Kang Z, Luo Y (2012) Sensitivity analysis of viscoplastic deformation process with application to metal preform design optimization. Eng Optim 44(12):1511–1523

    Article  MathSciNet  Google Scholar 

  • Khaledi K, Mahmoudi E, Datcheva M, König D, Schanz T (2016) Sensitivity analysis and parameter identification of a time dependent constitutive model for rock salt. J Comput Appl Math 293:128–138

    Article  MathSciNet  MATH  Google Scholar 

  • Kucherenko S (2010) A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices. Comput Phys Commun 181(7):1212–1217

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Q, Li Y, Cao L, Lei F, Wang Q (2018) Structural design and global sensitivity analysis of the composite B-pillar with ply drop-off. Struct Multidiscip Optim 57(3):965–975

    Article  Google Scholar 

  • Massada AB, Carmel Y (2008) Incorporating output variance in local sensitivity analysis for stochastic models. Ecol Model 213(3–4):463–467

    Article  Google Scholar 

  • Michiels W, Dirk R (2001) Sensitivity to perturbations in variable structure systems. J Comput Appl Math 132(1):127–140

    Article  MathSciNet  MATH  Google Scholar 

  • Morris M (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Nguyen AT, Reiter S (2015) A performance comparison of sensitivity analysis methods for building energy models. Build Simul 8(6):1–14

    Article  Google Scholar 

  • Plischke E, Borgonovo E, Smith C (2013) Global sensitivity measures from given data. Eur J Oper Res 226(3):536–550

    Article  MathSciNet  MATH  Google Scholar 

  • Rabitz H, Aliş ÖF (1999) General foundations of high-dimensional model representations. J Math Chem 25(2–3):197–233

    Article  MathSciNet  MATH  Google Scholar 

  • Rabitz H, Aliş ÖF, Shorter J, Shim K (1999) Efficient input—output model representations. Comput Phys Commun 117(1–2):11–20

    Article  MATH  Google Scholar 

  • Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145(2):280–297

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli A, Bolado R (1998) An alternative way to compute Fourier amplitude sensitivity test (FAST). Comput Stat Data Anal 26(4):445–460

    Article  MATH  Google Scholar 

  • Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270

    Article  MathSciNet  MATH  Google Scholar 

  • Sobie EA (2009) Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys J 96(4):1264–1274

    Article  Google Scholar 

  • Sobol’ IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Experiment 1:407–414

    MathSciNet  MATH  Google Scholar 

  • Sobol’ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280

    Article  MathSciNet  MATH  Google Scholar 

  • Sobol’ IM (2003) Theorems and examples on high dimensional model representation. Reliab Eng Syst Saf 79(2):187–193

    Article  Google Scholar 

  • Sobol’ IM, Kucherenko S (2009) Derivative based global sensitivity measures and their link with global sensitivity indices. Math Comput Simul 79(10):3009–3017

    Article  MathSciNet  MATH  Google Scholar 

  • Storlie CB, Swiler LP, Helton JC, Sallaberry CJ (2009) Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab Eng Syst Saf 94(11):1735–1763

    Article  Google Scholar 

  • Sudret B, Mai C (2015) Computing derivative-based global sensitivity measures using polynomial chaos expansions. Reliab Eng Syst Saf 134:241–250

    Article  Google Scholar 

  • Sung CH, Kwon JH (2000) Accurate aerodynamic sensitivity analysis using adjoint equations. AIAA J 38(2):243–250

    Article  Google Scholar 

  • Tian W (2012) A review of sensitivity analysis methods in building energy analysis. Renew Sust Energ Rev 20(4):411–419

    Google Scholar 

  • Wang XY, Wang DF, Sun WL, Liu PW (2012) Lightweight design for a cab of a heavy-duty truck based on passive safety. Adv Mater Res 569:603–609

    Article  Google Scholar 

  • Wang P, Lu Z, Tang Z (2013) An application of the kriging method in global sensitivity analysis with parameter uncertainty. Appl Math Model 37(9):6543–6555

    Article  MathSciNet  MATH  Google Scholar 

  • Wei P, Lu Z, Song J (2013) A new variance-based global sensitivity analysis technique. Comput Phys Commun 184(11):2540–2551

    Article  MathSciNet  MATH  Google Scholar 

  • Wei P, Lu Z, Song J (2015a) Regional and parametric sensitivity analysis of Sobol indices. Reliab Eng Syst Saf 137:87–100

    Article  Google Scholar 

  • Wei P, Lu Z, Song J (2015b) Variable importance analysis: a comprehensive review. Reliab Eng Syst Saf 142:399–432

    Article  Google Scholar 

  • Wei P, Wang Y, Tang C (2017) Time-variant global reliability sensitivity analysis of structures with both input random variables and stochastic processes. Struct Multidiscip Optim 55(5):1883–1889

    Article  MathSciNet  Google Scholar 

  • Xiao S, Lu Z, Wang P (2018) Multivariate global sensitivity analysis for dynamic models based on energy distance. Struct Multidiscip Optim 57(1):279–291

    Article  MathSciNet  Google Scholar 

  • Yan WJ, Wan HP, Ren WX (2017) Analytical local and global sensitivity of power spectrum density functions for structures subject to stochastic excitation. Comput Struct 182:325–336

    Article  Google Scholar 

  • Yang J (2011) Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environ Model Softw 26(4):444–457

    Article  Google Scholar 

  • Yin X, Chen W (2008) A hierarchical statistical sensitivity analysis method for complex engineering systems. J Mech Des 130(7):071402. https://doi.org/10.1115/1.2918913

    Article  Google Scholar 

  • Zeng F, Xie H, Liu Q, Li F, Tan W (2016) Design and optimization of a new composite bumper beam in high-speed frontal crashes. Struct Multidiscip Optim 53(1):115–122

    Article  Google Scholar 

  • Zhang Y, Yao W, Ye S, Chen X (2019) A regularization method for constructing trend function in Kriging model. Struct Multidiscip Optim 59(4):1221–1239.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Libo Cao’s Group for their help in validating the simulation model of commercial vehicle model. We also thank Mr. Xingfu Wu for his assistants in establishing meta-models and editing graphs.

Funding

This work is supported by the National Key R&D Program of China (Grant No. 2017YFB1301300), the National Science Foundation of China (Grant Nos. 51621004, 11572115), independent research project of State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology (EERIZZ2018001), independent research project of State Key Laboratory of Advanced Design and Manufacturing for the vehicle body, Hunan University (51475003), the Applied Basic Research Project in Changzhou (CJ20179009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiming Liu or Xu Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ji-Hong Zhu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(M 3 kb)

ESM 2

(M 905 bytes)

ESM 3

(M 3 kb)

ESM 4

(M 3 kb)

ESM 5

(M 5 kb)

ESM 6

(M 5 kb)

ESM 7

(M 9 kb)

Appendices

Appendix 1

1.1 Proof of the reasonability of high-order sensitivity index \( {\mathbf{S}}_{i_1L\kern0.14em {i}_s} \)

$$ {\displaystyle \begin{array}{l}{S}_{i_1L\kern0.24em {i}_s}^{i_1}+L+{S}_{i_1L\kern0.24em {i}_s}^{i_h}+L+{S}_{i_1L\kern0.24em {i}_s}^{i_s}\\ {}={S}_{i_1L\kern0.24em {i}_s}\cdot {k}_{i_1L\kern0.24em {i}_s}^{i_1}+L+{S}_{i_1L\kern0.24em {i}_s}\cdot {k}_{i_1L\kern0.24em {i}_s}^{i_h}+L+{S}_{i_1L\kern0.24em {i}_s}\cdot {k}_{i_1L\kern0.24em {i}_s}^{i_s}\\ {}={S}_{i_1L\kern0.24em {i}_s}\cdot \left({k}_{i_1L\kern0.24em {i}_s}^{i_1}+L+{k}_{i_1L\kern0.24em {i}_s}^{i_h}+L+{k}_{i_1L\kern0.24em {i}_s}^{i_s}\right)\\ {}={S}_{i_1L\kern0.24em {i}_s}\cdot \left(\frac{\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_1}}}{\sum \limits_{i_m={i}_1,L,{i}_s}\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_m}}}+L+\frac{\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_h}}}{\sum \limits_{i_m={i}_1,L,{i}_s}\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_m}}}+L+\frac{\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_s}}}{\sum \limits_{i_m={i}_1,L,{i}_s}\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_m}}}\right)\\ {}={S}_{i_1\cdots {i}_s}\cdot \frac{\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_1}}+L+\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_h}}+L+\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_s}}}{\sum \limits_{i_m={i}_1,L,{i}_s}\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_m}}}\\ {}={S}_{i_1L\kern0.24em {i}_s}\cdot \frac{\sum \limits_{i_m={i}_1,L,{i}_s}\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_m}}}{\sum \limits_{i_m={i}_1,L,{i}_s}\sqrt{M_{i_1L\kern0.24em {i}_s}^{i_m}}}\\ {}={S}_{i_1L\kern0.24em {i}_s}\end{array}} $$

1.2 Proof of the property that the sum of the reconstructed sensitivity indices is equal to 1

Proof of \( \sum \limits_{i_h=1}^nN{S}_{i_h}=1 \)

$$ {\displaystyle \begin{array}{l}\sum \limits_{i_h=1}^nN{S}_{i_h}\\ {}=\sum \limits_{i_h=1}^n\left(\sum \limits_{s=1}^n\sum \limits_{{}_1<L\kern0.36em <{i}_s}{S}_{i_1L\kern0.24em {i}_s}^{i_h}\right)=\sum \limits_{i_h=1}^n\left(\sum \limits_{s=1}^n\sum \limits_{i_1<L\kern0.36em <{i}_s}{S}_{i_1L\kern0.24em {i}_s}\cdot {k}_{i_1L\kern0.24em {i}_s}^{i_h}\right)\\ {}=\sum \limits_{s=1}^n\sum \limits_{i_1<L\kern0.36em <{i}_s}{S}_{i_1L\kern0.24em {i}_s}\cdot \left(\sum \limits_{i_1\le {i}_h\le {i}_s}{k}_{i_1L\kern0.24em {i}_s}^{i_h}\right)\\ {}=\sum \limits_{s=1}^n\sum \limits_{i_1<L\kern0.36em <{i}_s}{S}_{i_1L\kern0.24em {i}_s}\cdot 1\\ {}=1\end{array}} $$

Appendix 2.

Table 11 Thirty-five training samples generated using the Latin-hypercube sampling method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, Q., Han, X. et al. A new global sensitivity measure based on derivative-integral and variance decomposition and its application in structural crashworthiness. Struct Multidisc Optim 60, 2249–2264 (2019). https://doi.org/10.1007/s00158-019-02316-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02316-5

Keywords

Navigation