Skip to main content
Log in

On Chebyshev’s method for topology optimization of Stokes flows

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We present a locally cubically convergent algorithm for topology optimization of Stokes flows based on a Chebyshev’s iteration globalized with Armijo linesearch. The characteristic features of the method include the low computational complexity of the search direction calculation, evaluation of the objective function and constraints needed in the linesearch procedure as well as their high order derivatives utilized for obtaining higher order rate of convergence. Both finite element and finite volumes discretizations of the algorithm are tested on the standard two-dimensional benchmark problems, in the case of finite elements both on structured and quasi-uniform unstructured meshes of quadrilaterals. The algorithm outperforms Newton’s method in nearly all test cases. Finally, the finite element discretization of the algorithm is tested within a continuation/adaptive mesh refinement framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In dimension 2, the inclusion in (8) can be further strengthened and thus higher order derivatives may be obtained without assuming any further regularity of u. Alternatively, since the zeroth order term α(ρ)u in (4) is a priori in [L 2(Ω)]d one may appeal to the standard regularity results for the Stokes problem, see for example (Kellogg and Osborn 1976; Amrouche and Girault 1991), to assert that u∈[H s(Ω)]d, 1<s≤2, under the appropriate additional assumptions on f, u 0, and Ω, and in this way further strengthen the inclusion (8) using the Sobolev inequality.

  2. In Evgrafov (2014) we have verified that the state space Newton’s algorithm performs virtually independently of the selected discretization/mesh refinement.

  3. This discretization has been used in the original paper of Borrvall and Petersson (2003). Note that we count the number of elements differently: in (Borrvall and Petersson 2003) the number of u-elements is reported, whereas we list the number of macroelements. As a result the number of degrees of freedom in [Q2]2/Q1 and [Q2-iso-Q1]2/Q1 elements is the same on the same discretization level. In other words our 100×100 discretization [Q2-iso-Q1]2/Q1 corresponds to 200×200 u-elements.

  4. Note the lack of numerical scalability owing to the utilization of the direct linear solver.

References

  • Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale Stokes flow problems. Struct Multidiscip Optim 35(2):175–180

    Article  MATH  MathSciNet  Google Scholar 

  • Amrouche C, Girault V (1991) On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc Jpn Acad, Series A, Math Sci 67(5):171–175

    Article  MATH  MathSciNet  Google Scholar 

  • Babuška I (1973) The finite element method with penalty. Math Comput 27(122):221–228

    Article  MATH  Google Scholar 

  • Bangerth W, Hartmann R, Kanschat G (2007) deal.II - a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24/1–24/27

    Article  MathSciNet  Google Scholar 

  • Bartish MJ (1969) On some iterative methods of solving functional equations. Sibirskij matematiceskij zurnal 10(3):488–493

    Google Scholar 

  • Bercovier M, Pironneau O (1979) Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer Math 33(2):211–224

    Article  MATH  MathSciNet  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Internat J Numer Methods Fluids 41(1):77– 107

    Article  MATH  MathSciNet  Google Scholar 

  • Carlsson J, Sandberg M, Szepessy A (2009) Symplectic Pontryagin approximations for optimal design. ESAIM: Math Model and Numer Anal 43(1):3–32

    Article  MATH  MathSciNet  Google Scholar 

  • Challis VJ, Guest JK (2009) Level-set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79:1284–1308

    Article  MATH  MathSciNet  Google Scholar 

  • Davis TA (2004) Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2):196–199

    Article  MATH  Google Scholar 

  • Deng N, Zhang H (2004) Theoretical efficiency of a new inexact method of tangent hyperbolas. Optim Meth and Softw 19(3–4):247–265

    Article  MATH  MathSciNet  Google Scholar 

  • Duff IS (2002) MA57 a new code for the solution of sparse symmetric definite and indefinite systems. Technical Report RAL-TR-2002-024. Rutherford Appleton Laboratory

  • Evgrafov A (2005) The limits of porous materials in the topology optimization of Stokes flows. Appl Math Optim 52(3):263–277

    Article  MATH  MathSciNet  Google Scholar 

  • Evgrafov A (2014) State space Newtons method for topology optimization. Comput Methods Appl Mech Eng 278:272–290

    Article  MathSciNet  Google Scholar 

  • Geuzaine C, Remacle J-F (2009) Gmsh A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MATH  MathSciNet  Google Scholar 

  • Griebel M, Dornseifer T, Neunhoeffer T (1997) Numerical simulation in fluid dynamics: a practical introduction. SIAM 3

  • Gundersen G, Steihaug T (2012) On diagonally structured problems in unconstrained optimization using an inexact super Halley method. J Comput Appl Math 236(15):3685–3695

    Article  MATH  MathSciNet  Google Scholar 

  • Hood P, Taylor C (1973) Numerical solution of the Navier–Stokes equations using the finite element technique. Comput Fluids 1:1–28

    Article  MathSciNet  Google Scholar 

  • Kellogg RB, Osborn JE (1976) A regularity result for the Stokes problem in a convex polygon. J Funct Anal 21(4):397–431

    Article  MATH  MathSciNet  Google Scholar 

  • Kleinmichel H (1968) Stetige Analoga und Iterationsverfahren für nichtlineare Gleichungen in BANACHräumen. Math Nachr 37(5-6):313–343

    Article  MATH  MathSciNet  Google Scholar 

  • Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration. Struct Multidiscip Optim 45(5):693–701

    Article  MATH  MathSciNet  Google Scholar 

  • Mertvecova MA (1953) Analogue of the process of tangent hyperbolas for general functional equations. Dokl Akad Nauk SSSR 88:611–614

    MATH  MathSciNet  Google Scholar 

  • Nechepurenko MI (1954) On Chebyshev’s method for functional equations. Uspekhi Mat Nauk 9(2):163–170

    Google Scholar 

  • Nechepurenko MI (2004) Refinement of convergence conditions for the Chebyshev method. Sib Zh Vychisl Mat 7(3):249–260

    MATH  MathSciNet  Google Scholar 

  • Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Internat J Numer Methods Fluids 58(8)

  • Seiboldm B (2008) A compact and fast Matlab code solving the incompressible Navier–Stokes equations on rectangular domains. http://math.mit.edu/cse/codes/mit18086_navierstokes.pdf

  • Steihaug T, Suleiman S (2013) Rate of convergence of higher order methods. Appl Numer Math 67:230–242

    Article  MATH  MathSciNet  Google Scholar 

  • Verfürth R (1989) A posteriori error estimators for the Stokes equations. Numer Math 55(3):309–325

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Martin Berggren for pointing out the reference (Carlsson et al. 2009) to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Evgrafov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(ZIP 10.1 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evgrafov, A. On Chebyshev’s method for topology optimization of Stokes flows. Struct Multidisc Optim 51, 801–811 (2015). https://doi.org/10.1007/s00158-014-1176-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1176-x

Keywords

Navigation