Skip to main content
Log in

Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Deterministic optimization has been successfully applied to a range of design problems involving foam-filled thin-walled structures, and to some extent gained significant confidence for the applications of such structures in automotive, aerospace, transportation and defense industries. However, the conventional deterministic design could become less meaningful or even unacceptable when considering the perturbations of design variables and noises of system parameters. To overcome this drawback, a robust design methodology is presented in this paper to address the effects of parametric uncertainties of foam-filled thin-walled structure on design optimization, in which different sigma criteria are adopted to measure the variations. The Kriging modeling technique is used to construct the corresponding surrogate models of mean and standard deviation for different crashworthiness criteria. A sequential sampling approach is introduced to improve the fitness accuracy of these surrogate models. Finally, a gradient-based sequential quadratic program (SQP) method is employed from 20 different initial points to obtain a quasi-global robust optimum solution. The optimal solutions were verified by using the Monte Carlo simulation. The results show that the presented robust optimization method is fairly effective and efficient, the crashworthiness and robustness of the foam-filled thin-walled structure can be improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abramowicz W, Jones N (1984) Dynamic axial crushing of square tubes. Int J Impact Eng 2(2):179–208

    Article  Google Scholar 

  • Acar E, Solanki K (2009) System reliability based vehicle design for crashworthiness and effects of various uncertainty reduction measures. Struct Multidiscip Optim 39(3):311–325

    Article  Google Scholar 

  • Ahmad Z, Thambiratnam DP (2009) Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading. Comput Struct 87(3–4):186–197

    Article  Google Scholar 

  • Aktay L, Toksoy AK, Guden M (2006) Quasi-static axial crushing of extruded polystyrene foam-filled thin-walled aluminum tubes: experimental and numerical analysis. Mater Des 27(7):556–565

    Article  Google Scholar 

  • Apley DW, Liu J, Chen W (2006) Understanding the effects of model uncertainty in robust design with computer experiments. ASME J Mech Des 128(4):945–958

    Article  Google Scholar 

  • Ashby MF (2000) Metal foams: a design guide. Butterworth-Heinemann

  • Baril C, Yacout S, Clement B (2011) Design for six sigma through collaborative multiobjective optimization. Comput Ind Eng 60(1):43–55

    Article  Google Scholar 

  • Bates SJ, Sienz J, Toropov VV (2004) Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA 2004–2011:1–7

  • Bi J, Fang HB, Wang QA, Ren XC (2010) Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs. Finite Elem Anal Des 46(9):698–709

    Article  Google Scholar 

  • Boggs PT, Tolle JW (1995) Sequential quadratic programming. Acta Numerica 4(1):1–51

    Article  MathSciNet  Google Scholar 

  • Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solids 48(6–7):1253–1283

    Article  MATH  Google Scholar 

  • Du XP (2012) Reliability-based design optimization with dependent interval variables. Int J Numer Method Eng 91(2):218–228

    Article  MATH  Google Scholar 

  • Ghamarian A, Zarei HR, Abadi MT (2011) Experimental and numerical crashworthiness investigation of empty and foam-filled end-capped conical tubes. Thin-Walled Struct 49(10):312–1319

    Google Scholar 

  • Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. Math Phys Sci 382(1782):43–59

    Article  Google Scholar 

  • Hanssen AG, Langseth M, Hopperstad OS (2000) Static and dynamic crushing of square aluminium extrutions with aluminium foam filler. Int J Impact Eng 24(4):347–383

    Article  Google Scholar 

  • Hanssen AG, Langseth M, Hopperstad OS (2001) Optimum design for energy absorption of square aluminium columns with aluminium foam filler. Int J Mech Sci 43(1):153–176

    Article  MATH  Google Scholar 

  • Hanssen AG, Hopperstad OS, Langseth M, IIstad H (2002) Validation of constitutive models applicable to aluminium foams. Int J Mech Sci 44(2):359–406

    Article  Google Scholar 

  • Hou SJ, Li Q, Long SY, Yang XJ, Li W (2009) Crashworthiness design for foam filled thin-wall structures. Mater Des 30:2024–2032

    Article  Google Scholar 

  • Hou SJ, Han X, Sun GY, Long SY, Yang XJ, Li W, Li Q (2011) Multiobjective optimization for tapered circular tubes. Thin-Walled Struct 49:855–863

    Article  Google Scholar 

  • Kang Z, Luo YJ (2010) Reliability-based structural optimization with probability and convex set hybrid models. Struct Multidiscip Optim 42(1):89–102

    Article  MathSciNet  Google Scholar 

  • Kazanci Z, Bathe KJ (2012) Crushing and crashing of tubes with implicit time integration. Int J Impact Eng 42:80–88

    Article  Google Scholar 

  • Koch PN, Yang RJ, Gu L (2004) Design for six sigma through robust optimization. Struct Multidiscip Optim 26(3–4):235–248

    Article  Google Scholar 

  • Kleijnen JPC, Helton JC (1999) Statistical analyses of scatter plots to identify important factors in large-scale simulations: review and comparison of techniques. Reliab Eng Syst Saf 65(2):147–185

    Article  Google Scholar 

  • Langseth M, Hopperstad OS (1996) Static and dynamic axial crushing of square thin-walled aluminium extrusions. Int J Impact Eng 18(7–8):949–968

    Article  Google Scholar 

  • Lee KH, Kang DH (2006) A robust optimization using the statistics based on kriging metamodel. J Mech Sci Technol 20(8):1169–1182

    Article  Google Scholar 

  • Lee KH, Park GJ (2006) A global robust optimization using kriging based approximation model. JSME Int J (C) 49(3):779–788

    Article  Google Scholar 

  • Li FY, Li GY, Sun GY, Luo Z, Zhang Z (2010) Multi-disciplinary optimization for multi-objective uncertainty design of thin walled beams. CMC-Comput Mat Contin 19(1):37–56

    MATH  Google Scholar 

  • Li FY, Zhen Luo, Sun GY (2011) Reliability-based multiobjective design optimization under interval uncertainty. CMES-Comp Model Eng Sci 74(1):39–64

    MATH  Google Scholar 

  • Lonn D, Bergman G, Nilsson L, Simonsson K (2011) Experimental and finite element robustness studies of a bumper system subjected to an offset impact loading. Int J Crashworthiness 16(2):155–168

    Article  Google Scholar 

  • Mirfendereski L, Salimi M, Ziaei-Rad S (2008) Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings. Int J Mech Sci 50(6):1042–1057

    Article  Google Scholar 

  • Moradi M (2011) Structural applications of metal foams considering material and geometrical uncertainty. Open Access Dissertations. Paper 481 http://scholarworks.umass.edu/open_access_dissertations/481

  • Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Nia AA, Hamedani JH (2010) Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Struct 48(12):946–954

    Article  Google Scholar 

  • Porcaro R, Hanssen AG, Langseth M, Aalberg A (2005) An experimental investigation on the behaviour of self-piercing riveted connections in aluminium alloy AA6060. Int J Crashworthiness 11(5):397–417

    Article  Google Scholar 

  • Randrianalisoa J, Coquard R, Baillis D (2013) Microscale direct calculation of solid phase conductivity of voronoi’s foams. J Porous Media 16(5):411–426

    Article  Google Scholar 

  • Reid SR, Reddy TY, Gray MD (1986) Static and dynamic axial crushing of foam-filled sheet-metal tubes. Int J Mech Sci 28(5):295–322

    Article  Google Scholar 

  • Reyes A, Hopperstad OS, Berstad T, Hanssen AG, Langseth M (2003) Constitutive modeling of aluminum foam including fracture and statistical variation of density. Eur J Mech A-Solid 22(6):815–835

    Article  MATH  Google Scholar 

  • Reyes A, Hopperstad OS, Langseth M (2004) Aluminum foam-filled extrusions subjected to oblique loading: experimental and numerical study. Int J Solids Struct 41(5):1645–75

    Article  Google Scholar 

  • Rossi A, Fawaz Z, Behdinan K (2005) Numerical simulation of the axial collapse of thin-walled polygonal section tubes. Thin-Walled Struct 43(10):1646–1661

    Article  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423

    Article  MATH  MathSciNet  Google Scholar 

  • Santosa SP, Wierzbicki T, Hanssen AG, Langseth M (2000) Experimental and numerical studies of foam-filled sections. Int J Impact Eng 24(5):509–534

    Article  Google Scholar 

  • Schumacher A, Olschinka C (2008) Robust design considering highly nonlinear structural behavior. Struct Multidiscip Optim 35(3):263–272

    Article  Google Scholar 

  • Seitzberger M, Rammerstorfer FG, Gradinger R, Degischer HP, Blaimschein B, Walch C (2000) Experimental studies on the quasi-strain axial crushing of steel columns filled with aluminium foam. Int J Solid Struct 37(30):4125–4147

    Article  Google Scholar 

  • Shahbeyk S, Vafai A, Petrinic N (2005) Axial crushing of metal foam-filled square columns: Foam density distribution and impactor inclination effects. Thin-Walled Struct 43(12):1818–1830

    Article  Google Scholar 

  • Shariati M, Allahbakhsh HR, Saemi J, Sedighi M (2010) Optimization of foam filled spot-welded column for the crashworthiness design. Mechanika 3:10–16

    Google Scholar 

  • Simpson TW, Lin DK, Chen W (2001) Sampling strategies for computer experiments: design and analysis. Int J Reliab Appl 2(3):209–240

    Google Scholar 

  • Singace AA, Elsobky H (1996) Further experimental investigation on the eccentricity factor in the progressive crushing of tubes. Int J Solids Struct 33(24):3517–3538

    Article  Google Scholar 

  • Song XG, Sun GY, Li GY, Gao WZ, Li Q (2013) Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidiscip Optim 47(2):221–231

    Article  MATH  MathSciNet  Google Scholar 

  • Sun GY, Li GY, Hou SJ, Zhou SW, Li W, Li Q (2010a) Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater Sci Eng A-Struct 527(7–8):1911–1919

    Article  Google Scholar 

  • Sun GY, Li GY, Stone M, Li Q (2010b) A Two-Stage Multi-fidelity Optimization Procedure for Honeycomb-Type Cellular Materials. Comput Mater Sci 49:500–511

    Article  Google Scholar 

  • Sun GY, Li GY, Zhou SW, Li HZ, Hou SJ, Li Q (2011) Crashworthiness design of vehicle by using multiobjective robust optimization. Struct Multidiscip Optim 44(1):99–110

    Article  Google Scholar 

  • Szyniszewskia ST, Smithb BH, Hajjarc JF, Schaferd BW (2013) The mechanical properties and modeling of a sintered hollow sphere steel foam. Materi Des, Arwadeb SR. doi: 10.1016/j.matdes.2013.08.045

  • Toksoy AK, Guden M (2011) The optimization of the energy absorption of partially Al foam-filled commercial 1050H14 and 6061T4 Al crash boxes. Int J Crashworthiness 16(1):97–109

    Article  Google Scholar 

  • Vanderplaats GN, Moses F (1973) Structural optimization by methods of feasible directions. Comput Struct 3(4):739–755

    Article  Google Scholar 

  • Wierzbicki T, Abramowicz W (1983) On the crushing mechanics of thin-walled structures. ASME J Appl Mech 50(4A):727–734

    Article  MATH  Google Scholar 

  • Yang S, Qi C (2013) Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. Int J Impact Eng 54:177–191

    Article  Google Scholar 

  • Yang RJ, Akkerman A, Anderson DF, Faruque OM, Gu L (2000) Robustness optimization for vehicular crash simulations. Comput Sci Eng 2(6):8–13

    Article  Google Scholar 

  • Yang RJ, Chuang C, Gu L, Li G (2005) Experience with approximate reliability-based optimization method II: an exhaust system problem. Struct Multidiscip Optim 29(6):488–497

    Article  Google Scholar 

  • Zarei HR, Kroger M (2008) Optimization of the foam-filled aluminum tubes for crush box application. Thin-Walled Struct 46(2):214–221

    Article  Google Scholar 

  • Zhang X, Cheng GD (2007) A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. Int J Impact Eng 34(11):1739–1752

    Article  Google Scholar 

  • Zhang X, Hun H (2009) Energy absorption of longitudinally grooved square tubes under axial compression. Thin-Walled Struct 47(12):1469–1477

    Article  Google Scholar 

  • Zhang Y, Sun GY, Li GY, Luo Z, Li Q (2012) Optimization of foam-filled bitubal structures for crashworthiness criteria. Mater Des 38:99–109

    Article  Google Scholar 

  • Zhu P, Zhang Y, Chen GL (2009) Metamodel-based lightweight design of an automotive front-body structure using robust optimization. Proc Inst Mech Eng Part D-J Automob Eng 223(D9):1133–1147

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by The National 973 Project of China (2010CB328005), The National Natural Science Foundation of China (11202072), The Hunan Provincial Science Foundation of China (13JJ4036), The Doctoral Fund of Ministry of Education of China (20120161120005), and The Open Fund of Traction Power State Key Laboratory of Southwest Jiaotong University (TPL1206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguan Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Song, X., Baek, S. et al. Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidisc Optim 49, 897–913 (2014). https://doi.org/10.1007/s00158-013-1017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-1017-3

Keywords

Navigation