Skip to main content
Log in

Exploring new tensegrity structures via mixed integer programming

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A tensegrity structure is a prestressed pin-jointed structure consisting of continuously connected tensile members (cables) and disjoint compressive members (struts). Many classical tensegrity structures are prestress stable, i.e., they are kinematically indeterminate but stabilized by introducing prestresses. This paper presents a procedure for generating various prestress stable tensegrity structures. This method is based on truss topology optimization and does not require connectivity relation of cables and struts of a tensegrity structure to be known in advance. Unlike the conventional form-finding methods, the locations of nodes are fixed throughout optimization. The optimization problem with the constraints expressing the definition of tensegrity structure, kinematical indeterminacy, and symmetry of configurations is formulated as a mixed integer linear programming (MILP) problem. Numerical experiments demonstrate that various tensegrity structures can be generated from one given initial structure by solving the presented MILP problems by using a few control parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A tensegrity structure with a few number of different member lengths was called a semiregular tensegrity structure by Zhang et al. (2006).

References

  • Bai Y, de Klerk E, Pasechnik D, Sotirov R (2009) Exploiting group symmetry in truss topology optimization. Optim Eng 10:331–349

    Article  MathSciNet  MATH  Google Scholar 

  • Baudriller H, Maurin B, Cañadas P, Montcourrier P, Parmeggiani A, Bettache N (2006) Form-finding of complex tensegrity structures: application to cell cytoskeleton modelling. Comptes Rendus Mécanique 334:662–668

    Article  Google Scholar 

  • Bel Hadj Ali N, Rhode-Barbarigos L, Pascual Albi AA, Smith IFC (2010) Design optimization and dynamic analysis of a tensegrity-based footbridge. Eng Struct 32:3650–3659

    Article  Google Scholar 

  • Calladine CR (1978) Buckminster Fuller’s “tensegrity” structures and Clerk Maxwell’s rules for the construction of stiff frames. Int J Solids Struct 14:161–172

    Article  MATH  Google Scholar 

  • Connelly R, Back A (1998) Mathematics and tensegrity. American Scientist 86:142–151

    Article  Google Scholar 

  • Connelly R, Fowler PW, Guest SD, Schulze B, Whiteley WJ (2009) When is a symmetric pin-jointed framework isostatic? Int J Solids Struct 46:762–773

    Article  MATH  Google Scholar 

  • Connelly R, Terrell M (1995) Globally rigid symmetric tensegrities. Structural Topology 21:59–77

    MathSciNet  MATH  Google Scholar 

  • Connelly R, Whiteley W (1996) Second-order rigidity and prestress stability for tensegrity frameworks. SIAM J Discrete Math 6:453–491

    Article  MathSciNet  Google Scholar 

  • Ehara S, Kanno Y (2010) Topology design of tensegrity structures via mixed integer programming. Int J Solids Struct 47:571–579

    Article  MATH  Google Scholar 

  • Fowler PW, Guest SD (2000) A symmetry extension of Maxwell’s rule for rigidity of frames. Int J Solids Struct 37:1793–1804

    Article  MathSciNet  MATH  Google Scholar 

  • Guest SD (2006) The stiffness of prestressed frameworks: a unifying approach. Int J Solids Struct 43:842–854

    Article  MATH  Google Scholar 

  • Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidisc Optim 46:631–645

    Article  MathSciNet  Google Scholar 

  • Gurobi Optimization Inc. (2010) Gurobi Optimizer Reference Manual. http://www.gurobi.com/

  • Hanaor A (1988) Prestressed pin-jointed structures—flexibility analysis and prestress design. Comput Struct 28:757–769

    Article  MATH  Google Scholar 

  • Hanaor A, Liao M-K (1991) Double-layer tensegrity grids: static load response. Part I: analytical study. J Struct Eng (ASCE) 117:1660–1674

    Article  Google Scholar 

  • Heartney E (2009) Kenneth Snelson: forces made visible. Hard Press Editions, Lenox

    Google Scholar 

  • IBM ILOG (2010) User’s manual for CPLEX. http://www.ilog.com/

  • Juan SH, Mirats Tur JM (2008) Tensegrity frameworks: static analysis review. Mech Mach Theory 43:859–881

    Article  MATH  Google Scholar 

  • Kanno Y (2012) Topology optimization of tensegrity structures under self-weight loads. J Oper Res Soc Jpn 55:125–145

    MathSciNet  Google Scholar 

  • Kanno Y (2013) Topology optimization of tensegrity structures under compliance constraint: a mixed integer linear programming approach. Optim Eng. doi:10.1007/s11081-011-9172-0

    MATH  Google Scholar 

  • Kanno Y, Guo X (2010) A mixed integer programming for robust truss topology optimization with stress constraints. Int J Numer Methods Eng 83:1675–1699

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y, Ohsaki M, Murota K, Katoh N (2001) Group symmetry in interior-point methods for semidefinite program. Optim Eng 2:293–320

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Feng X-Q, Cao Y-P, Gao H (2010a) A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. Int J Solids Struct 47:1888–1898

    Article  MATH  Google Scholar 

  • Li Y, Feng X-Q, Cao Y-P, Gao H (2010b) Constructing tensegrity structures from one-bar elementary cells. Proc R Soc Lond A Math Phys Sci 466:45–61

    Article  MathSciNet  MATH  Google Scholar 

  • Masic M, Skelton RE, Gill PE (2005) Algebraic tensegrity form-finding. Int J Solids Struct 42:4833–4858

    Article  MathSciNet  MATH  Google Scholar 

  • Micheletti A (2012) Modular tensegrity structures: the TorVergata footbridge. In: Frémond M, Maceri F (eds) Mechanics, models and methods in civil engineering. Springer-Verlag, Berlin, pp 375–384

    Chapter  Google Scholar 

  • Micheletti A, Williams WO (2007) A marching procedure for form-finding for tensegrity structures. J Mech Mater Struct 2:857–882

    Article  Google Scholar 

  • Motro R (2003) Tensegrity. Kogan Page Science, London

    Google Scholar 

  • Pellegrino S (1992) A class of tensegrity domes. Int J Space Struct 7:127–142

    Google Scholar 

  • Pellegrino S, Calladine CR (1986) Matrix analysis of statically and kinematically indeterminate frameworks. Int J Solids Struc 22:409–428

    Article  Google Scholar 

  • Rasmussen MH, Stolpe M (2008) Global optimization of discrete truss topology design problems using a parallel cut-and-branch method. Comput Struct 86:1527–1538

    Article  Google Scholar 

  • Rieffel J, Valero-Cuevasa F, Lipson H (2009) Automated discovery and optimization of large irregular tensegrity structures. Comput Struct 87:368–379

    Article  Google Scholar 

  • Ross E, Schulze B, Whiteley W (2011) Finite motions from periodic frameworks with added symmetry. Int J Solids Struct 48:1711–1729

    Article  MATH  Google Scholar 

  • Rozvany GIN (2011) On symmetry and non-uniqueness in exact topology optimization. Struct Multidisc Optim 43:297–317

    Article  MathSciNet  Google Scholar 

  • Schulze B, Whiteley W (2011) The orbit rigidity matrix of a symmetric framework. Discrete Comput Geom 46:561–598

    Article  MathSciNet  MATH  Google Scholar 

  • Skelton R, de Oliveira MC (2009) Tensegrity systems. Springer, Dordrecht

    MATH  Google Scholar 

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidisc Optim 41:661–670

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2003) Modelling topology optimization problems as linear mixed 0–1 programs. Int J Numer Methods Eng 57:723–739

    Article  MathSciNet  MATH  Google Scholar 

  • Tibert AG, Pellegrino S (2003) Review of form-finding methods for tensegrity structures. Int J Space Struct 18:209–223

    Article  Google Scholar 

  • Tran HC, Lee J (2011) Determination of a unique configuration of free-form tensegrity structures. Acta Mech 220:331–348

    Article  MATH  Google Scholar 

  • Watada R, Ohsaki M, Kanno Y (2011) Non-uniqueness and symmetry of optimal topology of a shell for minimum compliance. Struct Multidisc Optim 43:459–471

    Article  Google Scholar 

  • Xu X, Luo Y (2010) Form-finding of nonregular tensegrities using a genetic algorithm. Mech Res Commun 37:85–91

    Article  Google Scholar 

  • Zhang JY, Guest SD, Ohsaki M (2009) Symmetric prismatic tensegrity structures. Part II: symmetry-adapted formulations. Int J Solids Struct 46:15–30

    Article  MATH  Google Scholar 

  • Zhang JY, Ohsaki M (2007) Stability conditions for tensegrity structures. Int J Solids Struct 44:3875–3886

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Maurin B, Motro R (2006) Form-finding of nonregular tensegrity systems. J Struct Eng (ASCE) 132:1435–1440

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their constructive comments. This work is partially supported by Grant-in-Aid for Scientific Research (C) 23560663, by the Global COE Program “The Research and Training Center for New Development in Mathematics,” and by the Aihara Project, the FIRST program from JSPS, initiated by CSTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Appendix: MILP formulation

Appendix: MILP formulation

In Section 5, we have formulated the optimization problem for design of tensegrity structures, problem (26), and shown that this optimization problem can be reformulated as an MILP problem. This MILP problem has been solved in Section 6 by using a commercial MILP solver. The explicit description of this MILP problem is given as

$$ \min\limits_{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{q}} \sum\limits_{i \in E} l_{i} y_{i} $$
(27a)
$${\textrm{s.\,t.}} {H} \boldsymbol{q} = \boldsymbol{0} ,$$
(27b)
$$ {-}{\overline{q}}^{\mathrm{s}} x_{i} \le q_{i} \le {-}{\underline{q}}^{\mathrm{s}} x_{i} + {\overline{q}}^{\mathrm{c}} (1 - x_{i}), \quad \forall i \in E , $$
(27c)
$${\underline{q}}^{\mathrm{c}} y_{i} - {\overline{q}}^{\mathrm{s}} (1 - y_{i}) \le q_{i} \le {\overline{q}}^{\mathrm{c}} y_{i} , \quad{\kern13pt} \forall i \in E , $$
(27d)
$$\sum\limits_{i \in E(v_{p})} x_{i} \le 1 , \quad{\kern80pt} \forall v_{p} \in V ,$$
(27e)
$$y_{i} \le \sum\limits_{i' \in E(v_{p})} x_{i'} , \quad{\kern8pt} \forall i \in E(v_{p}) , \quad \forall v_{p} \in V , $$
(27f)
$$\sum\limits_{i \in E} x_{i} \ge \bar{s} , $$
(27g)
$$x_{i} + x_{i'} + y_{i} + y_{i'} \le 1 , \quad{\kern13pt} \forall (i,i') \in P_{\mathrm{cross}} ,$$
(27h)
$$z_{j} \le \sum\limits_{i \in E_{j}} x_{i} , \quad{\kern91pt} \forall j \in B, $$
(27i)
$$\frac{1}{|E_{j}|} \sum\limits_{i \in E_{j}} x_{i} \le z_{j} , \quad{\kern66pt} \forall j \in B, $$
(27j)
$$\sum\limits_{j \in B} z_{j} = \bar{b} ,$$
(27k)
$$\sum\limits_{i \in E} (5 x_{i} - y_{i}) = \bar{d} + 6 , $$
(27l)
$$\sum\limits_{i \in E(v_{p})} y_{i} \ge 3 \sum\limits_{i \in E(v_{p})} x_{i} , \quad{\kern35pt} \forall v_{p} \in V , $$
(27m)
$$x_{i} \in \{ 0,1 \} , \quad{\kern38pt} y_{i} \in \{ 0,1 \} , \quad \forall i \in E , $$
(27n)
$$z_{j} \in \{ 0,1 \} , \quad{\kern93pt} \forall j \in B, $$
(27o)
$$x_{i} + y_{i} \le 1 , \quad{\kern91pt} \forall i \in E .$$
(27p)

Note that constraint (27p) is a valid inequality constraint, because constraints (27c), (27d) and (27n) imply (27p).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanno, Y. Exploring new tensegrity structures via mixed integer programming. Struct Multidisc Optim 48, 95–114 (2013). https://doi.org/10.1007/s00158-012-0881-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0881-6

Keywords

Navigation