Skip to main content
Log in

Design of laminated composite structures for optimum fiber direction and layer thickness, using optimality criteria

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this study, two optimality criteria are presented for optimum design of composite laminates using finite element method. Thickness of the layers and fiber orientation angles in each finite element are considered as the design variables. It will be shown that the optimum design of composite laminates with varying fiber orientations and layers thicknesses may be found by using these optimality criteria in an efficient way, without performing the sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adali S (1983) Design sensitivity analysis of an antisymmetric angle ply laminate. Eng Optim 7:69–83

    Article  Google Scholar 

  • Adelman HM, Haftka RT (1986) Sensitivity analysis for dicrete structural systems. AIAA J 24:823–832.

    Article  Google Scholar 

  • António CAC, Marques AT, Soeiro AV (1995) Optimization of laminated composite structures using a bilevel strategy. Compos Struct 33:193–200

    Article  Google Scholar 

  • Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York

    Google Scholar 

  • Berthelot JM (1999) Composite materials: mechanical behaviour and structural analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Burns T, Cherkaev A (1997) Optimal distribution of multimaterial composites for torsional beams. Struct Optim 13(1):4–11

    Article  Google Scholar 

  • Díaz AR, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10:40–45

    Article  Google Scholar 

  • Fang C, Springer GS (1993) Design of composite laminates by a Monte Carlo method. J Compos Mater 27(7):721–753

    Article  Google Scholar 

  • Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192(16):2125–2168

    Article  MATH  Google Scholar 

  • Fukunaga H, Vanderplaats GN (1990) Optimum design of laminated composite structures. In: de Wilde WP, Blain WR (eds) Composite materials design and analysis. Springer, Berlin Heidelberg New York, pp 493–497

    Google Scholar 

  • Fukunaga H, Vanderplaats GN (1991) Strength optimization of laminated composites with respect to layer thickness and/or layer orientation angle. Comput Struct 40(6):1429–1439

    Article  Google Scholar 

  • Fukunaga H, Sekine H (1993) Optimum design of composite structures for shape, layer angle and layer thickness distributions. J Compos Mater 27(15):1479–1492

    Article  Google Scholar 

  • Gáspár ZS, Lógó J, Rozvany GIN (2002) On design-dependent constraints and singular topologies. Struct Multidisc Optim 24(4):338–342

    Article  Google Scholar 

  • Grandhi RV (1993) Structural optimization with frequency constraints—a review. AIAA J 32:2296–2303

    Article  Google Scholar 

  • Gürdal Z, Olmedo R (1993) In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept. AIAA J 31(4):751–758

    Article  MATH  Google Scholar 

  • Haftka RT, Adelman HT (1989) Recent developments in structural sensitivity analysis. Struct Optim 1:137–151

    Article  Google Scholar 

  • Haftka R, Prasad B (1981) Optimum structural design with plate bending elements—a survey. AIAA J 19:517–522

    Article  MATH  Google Scholar 

  • Hyer MW, Charette RF (1991) Use of curvilinear fiber format in composite structure design. AIAA J 29:1011–1015

    Article  Google Scholar 

  • Hyer MW, Lee HH (1991) The use of curvilinear fibre format to improve buckling resistance of composite plates with central circular holes. J Compos Struct 18:236–261

    Article  Google Scholar 

  • Jog CS, Haber RB (1996) Stability of finite elements models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130:203–226

    Article  MathSciNet  MATH  Google Scholar 

  • Kalamkarov AL (1997) Optimal design of fiber-reinforced laminates. ASTM Spec Tech Publ 1309:237–249

    Google Scholar 

  • Kam TY, Lai MD (1989) Multilevel optimal design of laminated composite plate structures. Comput Struct 31:197–202

    Article  Google Scholar 

  • Kam TY, Snyman JA (1991) Optimal design of laminated composite plates using a global optimization technique. Compos Struct 19:351–370

    Article  Google Scholar 

  • Kasap I, Oral S (1997) The effect of curved fiber courses in the design of composite laminates. In: Gutkowski W, Mroz Z (eds) Proceedings of the second world congress of structural and multidisciplinary optimization, Zakopane, Poland pp 675–679, 26–30 May 1997

  • Katili I (1993) A new discrete Kirchhoff–Mindlin element based on Mindlin–Reinssner plate theory and assumed shear strain fields—part I: an extended DKT element for thick-plate bending analysis. Int J Numer Methods Eng 36:1859–1883

    Article  MATH  Google Scholar 

  • Kengtung C (1986) Sensitivity analysis and a mixed approach to the optimization of symmetric layered composite plates. Eng Optim 9:233–248

    Article  Google Scholar 

  • Khosravi P, Sedaghati R, Ganesan R (2007a) Optimization of geometrically nonlinear thin shells subject to displacement and stability constraints. AIAA J 45(3):684–692

    Article  Google Scholar 

  • Khosravi P, Sedaghati R, Ganesan R (2007b) Optimization of stiffened panels considering geometric nonlinearity. J Mech Mater Struct 2(7):1247–1263

    Google Scholar 

  • Khosravi P, Ganesan R, Sedaghati R (2007c) An efficient facet shell element for corotational nonlinear analysis of thin and moderately thick laminated composite structures. Comput Struct (in press)

  • Kodiyaiam S, Nagendra S, DeStefano J (1996) Composite sandwich structure optimization with application to satellite components. AIAA J 34(3):614–621

    Article  Google Scholar 

  • Landriani GS, Rovati M (1991) An optimal design for two-dimensional structures made of composite materials. J Eng Mater Technol 113:341–354

    Article  Google Scholar 

  • Le Riche R, Haftka RT (1995) Improved genetic algorithm for minimum thickness composite laminate design. Compos Eng 5(2):143–161

    Article  Google Scholar 

  • Lin CC, Yu AJ (1991) Optimum weight design of composite laminated plates. Comput Struct 38(5/6):581–587

    Article  MATH  Google Scholar 

  • Lógó J (2005) New types of optimal topologies by iterative method. Mech Struct Mach 33:149–171

    Article  Google Scholar 

  • Miravete A (1990) Analysis and optimization of simple composite structures. In: de Wilde WP, Blain WR (eds) Composite materials design and analysis. Springer, Berlin Heidelberg New York, pp 529–547

    Google Scholar 

  • Morton SK, Webber JPH (1997) Heuristic design of composite laminates for strength stiffness and multiple load cases. Aeronaut J 101(1001):35–45

    Google Scholar 

  • Mota Soares CM, Correia VF, Mateus H, Herskovits J (1995) A discrete model for the optimal design of thin composite plate-shell type structures using a two-level approach. Compos Struct 30:147–157

    Article  Google Scholar 

  • Muc A (1988) Optimal fiber orientation for simply-supported angle-ply plates under biaxial compression. Compos Struct 9:161–172

    Article  Google Scholar 

  • Olmedo R, Gürdal Z (1993) Buckling response of laminates with spatially varying fiber orientations. In: Proceedings of the AIAA/ ASME/ASCE/AHS/ASC 34th SDM Conference, La Jolla, CA, pp 2261–2269, 19–21 April 1993

  • Parnas L, Oral S, Ceyhan Ü (2003) Optimum design of composite structures with curved fiber courses. Compos Sci Technol 63:1071–1082

    Article  Google Scholar 

  • Pedersen P (1987) On sensitivity analysis and optima1 design of specially orthotropic laminates. Eng Optim 11:305– 316

    Article  Google Scholar 

  • Poulsen TA (2002) A simple scheme to prevent checkerboard patterns and one node connected hinges in topology optimization. Struct Multidisc Optim 24:396–399

    Article  Google Scholar 

  • Rao KP, Issac JC, Viswanath S, Murthy SS (1991) Optimum design of composite laminates for strength by ranking. J Reinf Plast Compos 10:477–494

    Article  Google Scholar 

  • Reiss R, Ramachandran S (1987) Maximum frequency design of symmetric angle-ply laminates. Composite structures 4(1). In: Marshall IH (ed) Analysis and design studies. Elsevier, London, pp 1476–1487

  • Sadr H, Afzali M, Sabzevari H (1989) Calcul et optimisation des structures composites stratifiees. Rapport CETIM Senlis

  • Schmit LA, Mehrinfar (1982) Multilevel optimum design of structures with fiber-composite stiffened panel components. AIAA J 20:138–147

    Article  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization—a survey on procedures dealing with checkerboards, mesh—dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Tsai SW, Hahn HT (1980) Introduction to composite materials. Technomic, Lancaster, PA

    Google Scholar 

  • Valido AJ, Cardoso JB (2003a) Geometrically nonlinear composite beam structures: optimal design. Eng Optim 35(5): 553–560

    Article  Google Scholar 

  • Valido AJ, Cardoso JB (2003b) Geometrically nonlinear composite beam structures: design sensitivity analysis. Eng Optim 35(5):531–551

    Article  Google Scholar 

  • Verijenko VE, Johnson JD (1996) Design synthesis of composite structures through the integration of optimization techniques and finite element analysis. Computer aided design in composite material technology—international conference. Computational Mechanics, Southampton, pp 197–206

  • Watkins RI (1987) Multilevel optimization of composite structures. In: Proceedings of the fourth international conference on composite structures. Elsevier Applied Science, Paisley, Scotland pp 1393–1403

  • Watkins RI, Morris A (1987) A multicriteria objective function optimization scheme for laminated composites for use in multilevel structural optimization schemes. Comput Methods Appl Mech Eng 60:233–251

    Article  MATH  Google Scholar 

  • Weiji L, Boohua S (1986) Multilevel optimization procedure of composite structures. Comput Struct 26:1357–1367

    Google Scholar 

  • Zynczowski M (1992) Recent advances in optimal structural design of shells. Eur J Mech A Solids 11:5–24

    Google Scholar 

  • Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21:152–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Khosravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khosravi, P., Sedaghati, R. Design of laminated composite structures for optimum fiber direction and layer thickness, using optimality criteria. Struct Multidisc Optim 36, 159–167 (2008). https://doi.org/10.1007/s00158-007-0207-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0207-2

Keywords

Navigation