Skip to main content
Log in

Effectively inseparable Boolean algebras in lattices of sentences

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show the non-arithmeticity of 1st order theories of lattices of Σ n sentences modulo provable equivalence in a formal theory, of diagonalizable algebras of a wider class of arithmetic theories than has been previously known, and of the lattice of degrees of interpretability over PA. The first two results are applications of Nies’ theorem on the non-arithmeticity of the 1st order theory of the lattice of r.e. ideals on any effectively dense r.e. Boolean algebra. The theorem on degrees of interpretability relies on an adaptation of techniques leading to Nies’ theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hájek P., Pudlák P.: Metamathematics of First-Order Arithmetic. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  2. Harrington L., Nies A.: Coding in the partial order of enumerable sets. Adv. Math. 133, 133–162 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hodges W.: Model Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Lindström P.: Some results on interpretability. In: Jensen, F.V., Mayoh, B.H., Møller, K.K. (eds) Proceedings from 5th Scandinavian Logic Symposium, pp. 329–361. Aalborg University Press, Aalborg (1979)

    Google Scholar 

  5. Lindström P.: On partially conservative sentences and interpretability. Proc. Amer. Math. Soc. 91, 436–443 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lindström P.: Aspects of Incompleteness, 2nd ed. A K Peters, Natick (2003)

    MATH  Google Scholar 

  7. Lindström, P., Shavrukov, V.Yu.: The ∀∃ theory of Peano Σ1 sentences. J. Math. Log. (to appear)

  8. Maass W.: Major subsets and automorphisms of recursively enumerable sets. In: Nerode, A., Shore, R.A. (eds) Recursion Theory, pp. 21–32. American Mathematical Society, Providence (1985)

    Google Scholar 

  9. Montagna F., Sorbi A.: Universal recursion theoretic properties of r.e. preordered structures. J. Symb. Log. 50, 397–406 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nerode A., Remmel J.: A survey of lattices of r.e. substructures. In: Nerode, A., Shore, R.A. (eds) Recursion Theory., pp. 323–375. American Mathematical Society, Providence (1985)

    Google Scholar 

  11. Nies A.: Intervals of the lattice of computably enumerable sets and effective boolean algebras. Bull. London Math. Soc. 29, 683–692 (1997)

    Article  MathSciNet  Google Scholar 

  12. Nies A. Coding methods in computability theory and complexity theory. Habilitationsschrift, Universität Heidelberg (1998)

  13. Nies A.: Effectively dense Boolean algebras and their applications. Trans. Amer. Math. Soc. 352, 4989–5012 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pour-El M.B.: Effectively extensible theories. J. Symb. Log. 33, 56–68 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pour-El M.B., Kripke S.: Deduction-preserving “Recursive Isomorphisms” between theories. Fund. Math. 61, 141–163 (1997)

    MathSciNet  Google Scholar 

  16. Shavrukov V.Yu.: Undecidability in diagonalizable algebras. J. Symb. Log. 62, 79–116 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Shavrukov.

Additional information

To the memory of Pelle Lindström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shavrukov, V.Y. Effectively inseparable Boolean algebras in lattices of sentences. Arch. Math. Logic 49, 69–89 (2010). https://doi.org/10.1007/s00153-009-0161-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-009-0161-3

Keywords

Mathematics Subject Classification (2000)

Navigation