Skip to main content

Advertisement

Log in

Energy use, population and growth, 1800–1970

  • Original Paper
  • Published:
Journal of Population Economics Aims and scope Submit manuscript

Abstract

In this paper, the role of energy use is incorporated into unified growth theory. The paper presents some interesting evidence about the evolution of energy in the transition from stagnation to growth, and it subsequently develops a growth model where the observed increase in conversion efficiency in the coal energy sector is explicitly modelled and calibrated to existing data over the period 1800–1970. The quantitative analysis sheds light on the impact of energy use on the transition from stagnation to growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acemoglu D, Johnson S, Robinson JA (2005) Institutions as the fundamental cause of long-run growth. In: Aghion P, Durlauf S (eds) Handbook of economic growth, 1st edn. Elsevier, Amsterdam, pp 385–472

    Chapter  Google Scholar 

  • Acemoglu D, Robinson JA (2006) Economic backwardness in political perspective. Am Polit Sci Rev 100(1):115–131

    Article  Google Scholar 

  • Alesina A, Devleeschauwer A, Easterly W et al (2003) Fractionalization. J Econ Growth 8(2):155–194

    Article  Google Scholar 

  • Baldwin RE, Martin P, Ottaviano GIP (2001) Global income divergence, trade and industrialization: the geography of growth take-offs. J Econ Growth 6(1):5–37

    Article  Google Scholar 

  • Becker GS, Murphy KM, Tamura RF (1990) Human capital, fertility, and economic growth. J Polit Econ 98(5):S12-S37

    Article  Google Scholar 

  • Carraro C, Galeotti M (2002) Traditional environmental instruments, Kyoto mechanisms and the role of technological change. In: Carraro C, Egenhofer C (eds) Firms, governments and climate policy-incentive-based policies for long-term climate change. Edward Elgar, Cheltenham, pp 222–266

    Google Scholar 

  • Carraro C, Galeotti M (2004) Does endogenous technological change make a difference in climate change policy analysis? A Robustness Exercise with the FEEM-RICE Model. Working paper no. 152.04., Fondazione Eni Enrico Mattei

  • Cigno A (1998) Fertility decisions when infant survival is endogenous. J Popul Econ 11(1):21–28

    Article  Google Scholar 

  • Clarke LE, Weyant JP (2002) Modelling induced technological change. In: Grübler A, Nakicenovic N, Nordhaus WD (eds) Technological change and the environment. Resources for the Future, Washington, pp 320–363

    Google Scholar 

  • Cohen JE (1995) How many people can the earth support? Norton, New York

    Google Scholar 

  • Dalgaard CJ, Strulik H (2007) Rediscovering the Solow model: an energy network approach. discussion paper no. 07–09, Department of Economics, University of Copenhagen

  • Doepke M (2004) Accounting for fertility decline during the transition to growth. J Econ Growth 9(3):347–383

    Article  Google Scholar 

  • Dooley JJ (1999) Energy R&D in the United States. Working paper no. 12188, US Department of Energy, Pacific Northwest National Laboratory

  • Easterlin RA (1996) Growth triumphant: the twenty-first century in historical perspective. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Easterly W, Levine R (1997) Africa’s growth tragedy: policies and ethnic divisions. Q J Econ 112(4):1203–1250

    Article  Google Scholar 

  • Easterly W, Levine R (2003) Tropics, germs and crops: the role of endowments in economic development. J Monet Econ 50(1):3–39

    Article  Google Scholar 

  • Edenhofer O, Bauer N, Kriegler E (2005) The impact of technological change on climate protection and welfare: insights from the model MIND. Ecol Econ 54(2–3):277–292

    Article  Google Scholar 

  • EIA (2005) Historical data overview. Energy Information Administration, US Department of Energy. http://www.eia.doe.gov/overview_hd.html

  • EIA (2009) Energy glossary. Energy Information Administration, US Department of Energy. http://www.eia.doe.gov/glossary/index.html

  • Energy.EU (2009) Energy glossary. Europe’s Energy Portal. http://www.energy.eu/glossary.php

  • Engerman SL, Sokoloff KL (2002) Factor endowment, inequality, and paths of development among new world economies. Economía 3(1):41–109

    Article  Google Scholar 

  • Etemad B, Luciani J, Bairoch P, Toutain JC (1991) World energy production 1800–1985. Libraire Droz, Geneva

    Google Scholar 

  • Fernández-Villaverde J (2001) Was Malthus right? Economic growth and population dynamics. Working paper no. 01-046, Penn Institute for Economic Research, University of Pennsylvania

  • Gagnon L (2008) Civilisation and energy payback. Energy Policy 36(9):3317–3322

    Article  Google Scholar 

  • Galor O (2005) From stagnation to growth: unified growth theory. In: Aghion P, Durlauf S (eds) Handbook of economic growth. Elsevier, Amsterdam, pp 171–293

    Chapter  Google Scholar 

  • Galor O, Moav O (2002) Natural selection and the origin of economic growth. Q J Econ 117(4):1133–1191

    Article  Google Scholar 

  • Galor O, Mountford A (2006) Trade and the great divergence: the family connection. Am Econ Rev 96(2):299–303

    Article  Google Scholar 

  • Galor O, Mountford A (2008) Trading population for productivity: theory and evidence. Rev Econ Stud 75(4):1143–1179

    Article  Google Scholar 

  • Galor O, Weil D (1999) From Malthusian stagnation to modern growth. Am Econ Rev 89(2): 150–154

    Article  Google Scholar 

  • Galor O, Weil D (2000) Population, technology and growth: from Malthusian stagnation to the demographic transition and beyond. Am Econ Rev 90(4):806–828

    Article  Google Scholar 

  • Galor O, Moav O, Vollrath D (2009) Inequality in land ownership, the emergence of human capital promoting institutions and the great divergence. Rev Econ Stud 76(1):143–179

    Article  Google Scholar 

  • Gemmell N, Wardley P (1996) Output, productivity and wages in the British coal industry before 1914: a model with evidence from the Durham region. Bull Econ Res 48(3):209–240

    Article  Google Scholar 

  • Gowen MM (1989) Biofuel v fossil fuel economics in developing countries: how green is the pasture. Energy Policy 17(5):455–470

    Article  Google Scholar 

  • Hall DO, Rosillo-Calle F, Woods J (1994) Biomass utilization in households & industry: energy use and development. Chemosphere 29(5):1099–1119

    Article  Google Scholar 

  • Hansen GD, Prescott EC (2002) Malthus to Solow. Am Econ Rev 92(4):1205–1217

    Article  Google Scholar 

  • Hillring B (2006) World trade in forest products and wood fuel. Biomass Bioenergy 30(10):815–825

    Article  Google Scholar 

  • Jones C (2001) Was an industrial revolution inevitable? Economic growth over the very long run. Adv Macroecon 1(2):1–43

    Google Scholar 

  • Karekezi S, Lata K, Coelho ST (2004) Traditional biomass energy: improving its use and moving to modern energy use. Working paper no. 308, AFREPREN/FWD

  • Kögel T, Prskawetz A (2001) Agricultural productivity growth and escape from the Malthusian trap. J Econ Growth 6(4):337–357

    Article  Google Scholar 

  • Kostic MM (2007) Energy: global and historical background. In: Capehart BL (ed) Encyclopedia of energy engineering and technology. Taylor & Francis, New York, pp 601–615

    Google Scholar 

  • Lagerlöf NP (2003a) From Malthus to modern growth: can epidemics explain the three regimes? Int Econ Rev 44(2):755–777

    Article  Google Scholar 

  • Lagerlöf NP (2003b) Gender equality and long-run growth. J Econ Growth 8(4):403–426

    Article  Google Scholar 

  • Lagerlöf NP (2003c) Mortality and early growth in England, France and Sweden. Scand J Econ 105(3):419–440

    Article  Google Scholar 

  • Lagerlöf NP (2006) The Galor–Weil model revisited: a quantitative exercise. Rev Econ Dyn 9(1):116–142

    Article  Google Scholar 

  • Lane PR, Tornell A (1996) Power, growth and the voracity effect. J Econ Growth 1(2):213–241

    Article  Google Scholar 

  • Leach G (1992) The energy transition. Energy Policy 20(2):116–123

    Article  Google Scholar 

  • Löschel A (2002) Technological change in economic models of environmental policy: a survey. Ecol Econ 43(2–3):105–126

    Article  Google Scholar 

  • Maddison A (2007) The contours of the world economy 1–2030 AD. Oxford University Press, Oxford

    Google Scholar 

  • Pérez-Barahona A (2007) Capital accumulation and non-renewable energy resources: a special functions case. Discussion paper no. 2007/9, CORE, Université Catholique de Louvain

  • Pomeranz K (2000) The great divergence: China, Europe and the making of the modern world economy. Princeton University Press, Princeton

    Google Scholar 

  • Reilly J, Paltsev S (2009) Biomass energy and competition for land. In: Hertel TW, Rose SK, Tol RSJ (eds) Economic analysis of land use in global climate change policy, 1st edn. Routledge, Abingdon, pp 184–207

    Google Scholar 

  • Rodrik D, Subramanian A, Trebbi F (2004) Institutions rule: the primacy of institutions over geography and integration in economic development. J Econ Growth 9(2):131–165

    Article  Google Scholar 

  • Schlamadinger B, Jürgens I (2004) Bioenergy and the clean development mechanism. In: Proceedings of the 2nd world conference on biomass for energy, industry and climate protection. Rome, Italy, pp 2298–2301

  • Schurr SH (1984) Energy use, technological change, and productive efficiency: an economic–historical interpretation. Annu Rev Energy 9:409–425

    Article  Google Scholar 

  • Shell International, Global Business Environment (2001) Energy needs, choices and possibilities-scenarios to 2050. http://www.cleanenergystates.org/CaseStudies/Shell_2050.pdf

  • Stern DI, Cleveland CJ (2004) Energy and economic growth. Working paper no. 0410, Department of Economics, Rensselaer Polytechnic Institute

  • Stewart DJ (1997) African urbanization: dependent linkages in a global economy. Tijdschr Econ Soc Geogr 88(3):251–261

    Article  Google Scholar 

  • Sue Wing I (2006) Representing induced technological change in models for climate policy analysis. Energy Econ 28(5–6):539–562

    Article  Google Scholar 

  • Tahvonen O, Salo S (2001) Economic growth and the transitions between renewable and nonrenewable energy resources. Eur Econ Rev 45(8 ):1379–1398

    Article  Google Scholar 

  • Tamura R (2002) Human capital and the switch from agriculture to industry. J Econ Dyn Control 27(2):207–242

    Article  Google Scholar 

  • Tamura R (2006) Human capital and economic development. J Dev Econ 79(1):26–72

    Article  Google Scholar 

  • van Aardenne JA, Dentener FJ, Olivier JGJ et al (2001) A 1°×1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob Biogeochem Cycles 15(4):909–928

    Article  Google Scholar 

  • van den Bergh JCJM (1999) Handbook of environmental and resource economics. Edward Elgar, Cheltenham

    Google Scholar 

  • van der Zwaan BCC, Gerlagh R, Klaassen G et al (2002) Endogenous technological change in climate change modelling. Energy Econ 24(1):1–19

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful for helpful comments from Michael Funke, Richard S. J. Tol, Beatriz Gaitán-Soto, Anne-Kathrin Heinrichs, Fredrik Hesseborn, Pehr-Johan Norbäck and Alessandro Cigno. Help from Richard S. J. Tol and Katsumasa Tanaka with providing data is gratefully acknowledged. Johan Lorentzon and Jonas Lindemann are acknowledged for their help with graphical issues. Finally, the author is grateful for financial support from HamburgUniversity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fröling.

Additional information

Responsible editor: Alessandro Cigno

Comments from two anonymous referees are gratefully acknowledged.

Appendices

Appendix 1: Construction of data series for primary energy production from biomass burning

Biofuel combustion:

Combustion of wood, wood waste, charcoal, dung, crop, crop residue, bagasse, ethanol, black liquor, non-solid fuels, industrial and municipal waste (van Aardenne et al. 2001).

Biomass burning:

Savannah burning, deforestation, organic waste burning and residential biofuel burning (van Aardenne et al. 2001).

Coal:

See Etemad et al. (1991).

Non-renewable energy:

Depletable energy (fossil fuels; Tahvonen and Salo 2001).

Primary energy:

Energy in the form that it is first accounted for in a statistical energy balance, before any transformation to secondary or tertiary forms of energy (EIA 2009).

Renewable energy:

Non-depletable energy, including hydropower, wind energy, solar energy, biomass and geothermal energy (Tahvonen and Salo 2001).

Secondary (derived) energy:

The energy produced by the conversion of primary energy (Energy.EU 2009).

TJ:

Unit of energy, 1 TJ = 1012 J = 1012 J.

Data on carbon dioxide emissions from biofuel combustion over the period 1890–1990 are available in van Aardenne et al. (2001). There, biofuel combustion is a separate source of emissions, different from biomass burning. The category biofuel combustion is subdivided into domestic/residential and industrial biofuel burning. van Aardenne et al. (2001) defines biomass burning as savannah burning and deforestation. These activities are not related to the energy sector and are not considered in this study. Throughout this paper, we use the term biomass energy, or energy production from biomass burning, for the class that van Aardenne et al. (2001) denotes biofuel combustion.

It must be clarified that biomass burning in this paper is set equal to biofuel combustion in the glossary above. In the van Aardenne et al. (2001) data set, biofuel encompasses both traditional and modern biofuels, where the latter mainly are regarded as secondary energy forms (Karekezi et al. 2004). Karekezi et al. (2004) report on the deficiencies of existing data sets when it comes to differentiating between traditional and modern biofuel energy use. Hall et al. (1994) describes a lack of data on biofuel production and use. Traditional biofuel is the part of biofuels that is mainly a primary energy source. Since modern biofuels account for a small share in global biofuel energy supply (Karekezi et al. 2004; Tahvonen and Salo 2001) we use the van Aardenne et al. (2001) data set without modifications and let the derived data represent primary energy production from biomass burning.

In the previous paragraphs, we defined biomass energy as we use the term in this paper. van Aardenne et al. (2001) provide data on carbon dioxide emissions and not on energy production. We calculate the corresponding energy production figures using that the emission factor for biomass combustion is 3 × 10 − 8 kgC/J (van Aardenne et al. 2001). Absent other information, we assume that the same emission factor is valid from year 1800 and onwards. Thus, we can divide the data series of emissions with this emission factor and get the corresponding data series for energy production. We then extrapolate this data series back to year 1800 by using the assumption that biomass use per person was not considerably higher or lower in the past than in the present. A similar assumption is used in van Aardenne et al. (2001) when extrapolating the emissions data series back to year 1890. The difference is that the work of van Aardenne et al. (2001) focuses on the rural population, whereas we in this paper utilise the total population. In van Aardenne et al. (2001), it is assumed that this relation holds for the past century. Thus, one can divide the biomass use in year 1990 with the level of population and then multiplying the resulting figure with the levels of population in years 1800 and 1870.

For all data series, the data are presented for years 1800, 1870, 1900, 1910 and 1950–1970. This is done for the sake of consistency. In the cases where data are not available at these years, we have chosen data corresponding to years that are closest to the actual years. We find this approach appropriate for a very long run analysis of the broad trends in the data. For more information, we refer to the original data sources.

Appendix 2: Derivation of the static equilibrium quantities

Maximising profits according to Eq. 17 yields

$$ \label{eq27} p_{{\rm{E}}t} \varphi _1^\xi \left( {\frac{E_t }{E_{{\Pr \rm{B}}t} }} \right)^{1-\xi }=p_{{\Pr \rm{B}}t} , $$
(27)

and

$$ \label{eq28} p_{{\rm{E}}t} A_{{\rm{EC}}t}^\xi \left( {\frac{E_t }{E_{{\Pr \rm{C}}t} }} \right)^{1-\xi }=p_{{\Pr \rm{C}}t} . $$
(28)

Since the energy-producing firms spend all their income on labour costs (Eqs. 18 and 19), we can write Eqs. 27 and 28 as

$$ \label{eq29} p_{{\rm{E}}t} \varphi _1^\xi \left( {\frac{E_t }{E_{{\Pr \rm{B}}t} }} \right)^{1-\xi }=w_{{\Pr \rm{B}}t} \frac{L_{{\Pr \rm{B}}t} }{E_{{\Pr \rm{B}}t} }, $$
(29)

and

$$ \label{eq30} p_{{\rm{E}}t} A_{{\rm{EC}}t}^\xi \left( {\frac{E_t }{E_{{\Pr \rm{C}}t} }} \right)^{1-\xi }=w_{{\Pr \rm{C}}t} \frac{L_{{\Pr \rm{C}}t} }{E_{{\Pr \rm{C}}t} }. $$
(30)

Substituting Eqs. 29 and 30 into Eq. 13 gives

$$ \label{eq31} w_{{\Pr \rm{B}}t} \frac{1}{\varphi _1^\xi }\left( {\frac{E_{{\Pr \rm{B}}t} }{E_t }} \right)^{1-\xi }\frac{L_{{\Pr \rm{B}}t} }{E_{{\Pr \rm{B}}t} }E_t =\pi _{\rm E} Y_t , $$
(31)

and

$$ \label{eq32} w_{{\Pr \rm{C}}t} \frac{1}{A_{{\rm{EC}}t}^\xi }\left( {\frac{E_{{\Pr \rm{C}}t} }{E_t }} \right)^{1-\xi }\frac{L_{{\Pr \rm{C}}t} }{E_{{\Pr \rm{C}}t} }E_t =\pi _{\rm E} Y_t . $$
(32)

Equating wages between Eq. 14 and Eqs. 3132 yields

$$ \label{eq33} \left( {1-\pi _{\rm A} -\pi _{\rm{EA}} -\pi _{\rm E} } \right)\frac{1}{L_{{\rm{Y}}t} }\frac{1}{\varphi _1^\xi }\left( {\frac{E_{{\Pr \rm{B}}t} }{E_t }} \right)^{1-\xi }\frac{L_{{\Pr \rm{B}}t} }{E_{{\Pr \rm{B}}t} }E_t =\pi _{\rm E} , $$
(33)

and

$$ \label{eq34} \left( {1-\pi _{\rm A} -\pi _{\rm{EA}} -\pi _{\rm E} } \right)\frac{1}{L_{{\rm{Y}}t} }\frac{1}{A_{{\rm{EC}}t}^\xi }\left( {\frac{E_{{\Pr \rm{C}}t} }{E_t }} \right)^{1-\xi }\frac{L_{{\Pr \rm{C}}t} }{E_{{\Pr \rm{C}}t} }E_t =\pi _{\rm E} . $$
(34)

For the economy as a whole, we have that

$$ \label{eq35} \frac{\left( {1-\pi _{\rm A} -\pi _{\rm{EA}} -\pi _{\rm E} } \right)Y_t }{Y_t }=\left( {1-\pi _{\rm A} -\pi _{\rm{EA}} -\pi _{\rm E} } \right)=\frac{wL_{{\rm{Y}}t} }{wL_t }=\frac{L_{{\rm{Y}}t} }{L_t }. $$
(35)

Substituting Eq. 35 into Eqs. 33 and 34 gives

$$ \label{eq36} \frac{1}{L_t }\frac{1}{\varphi _1^\xi }\left( {\frac{E_{{\Pr \rm{B}}t} }{E_t }} \right)^{1-\xi }\frac{L_{{\Pr \rm{B}}t} }{E_{{\Pr \rm{B}}t} }E_t =\pi _{\rm E} , $$
(36)

and

$$ \label{eq37} \frac{1}{L_t }\frac{1}{A_{{\rm{EC}}t}^\xi }\left( {\frac{E_{{\Pr \rm{C}}t} }{E_t }} \right)^{1-\xi }\frac{L_{{\Pr \rm{C}}t} }{E_{{\Pr \rm{C}}t} }E_t =\pi _{\rm E} . $$
(37)

We can rewrite Eqs. 36 and 37 to

$$ \label{eq38} \frac{L_{{\Pr \rm{B}}t} }{L_t }=\varphi _1^\xi \pi _{\rm E} \left( {\frac{E_{{\Pr \rm{B}}t} }{E_t }} \right)^\xi , $$
(38)

and

$$ \label{eq39} \frac{L_{{\Pr \rm{C}}t} }{L_t }=A_{{\rm{EC}}t}^\xi \pi _{\rm E} \left( {\frac{E_{{\Pr \rm{C}}t} }{E_t }} \right)^\xi . $$
(39)

Substituting Eqs. 38 and 39 into Eqs. 8 and 7, respectively, yields

$$ \label{eq40} E_{{\Pr \rm{B}}t} =\left( {\theta \varphi _1^\xi \pi _{\rm E} } \right)^{\frac{1}{1-\xi }}\left( {\frac{1}{E_t }} \right)^{\frac{\xi }{1-\xi }}L_t ^{\frac{1}{1-\xi }}, $$
(40)

and

$$ \label{eq41} E_{{\Pr \rm{C}}t} =\left( {\Lambda A_{{\rm{EC}}t}^\xi \pi _{\rm E} } \right)^{\frac{1}{1-\xi }}\left( {\frac{1}{E_t }} \right)^{\frac{\xi }{1-\xi }}L_t^{\frac{1}{1-\xi }} . $$
(41)

We continue by substituting Eqs. 40 and 41 into Eq. 16 and solve for E t

$$ \label{eq42} E_t =\left( {\varphi _1^\xi \Omega _{1t}^{\frac{\xi }{1-\xi }} +\Omega _{2t}^{\frac{\xi }{1-\xi }} A_{{\rm{EC}}t}^{\frac{\xi }{1-\xi }} } \right)^{\frac{1-\xi }{\xi }}L_t , $$
(42)

where

$$ \label{eq43} \Omega _{1t} \equiv \theta \varphi _1^\xi \pi _{\rm E} , $$
(43)

and

$$ \label{eq44} \Omega _{2t} \equiv \Lambda \pi _{\rm E} . $$
(44)

Next, we combine Eq. 25 with Eqs. 2 and 3 which yields

$$ \label{eq45} \left( {\alpha \left( {1-\ell _t } \right)-\overline b } \right)^\eta =\frac{\alpha \mu }{1-\mu }\frac{\left( {w_t \ell _t -\overline c } \right)^\gamma }{w_t }. $$
(45)

Substituting Eq. 35 into Eq. 14 and using the productivity measure from Section 3, we arrive at

$$ \label{eq46} w_t =\frac{a_t }{\ell _t^{1-\beta -\psi } }. $$
(46)

Combining Eqs. 45 and 46 and omitting the time subscripts, we could define

$$ \label{eq47} F\left( \ell \right)\equiv \left( {\alpha \left( {1-\ell } \right)-\overline b } \right)^\eta -\frac{\alpha \mu }{1-\mu }\frac{1}{a}\left( {a\ell ^{\beta +\psi }-\overline c } \right)^\gamma \ell ^{1-\beta -\psi }. $$
(47)

The equilibrium satisfies F(ℓ ∗ ) = 0. The other equilibrium quantities could be obtained through solving the above equations in a recursive manner, once the equilibrium value ℓ ∗  is obtained.

Appendix 3: Calibration of the utility function

Below we describe how the parameters of the utility function (Eq. 4) could be estimated. We start from Eq. 2 and substitute Eq. 3 into this equation. Then we get

$$ \label{eq48} c_t =w_t \left( {1-\frac{b_t }{\alpha }} \right). $$
(48)

Solving for w t yields

$$ \label{eq49} w_t =\frac{c_t }{\left( {1-\frac{b_t }{\alpha }} \right)}. $$
(49)

Substituting Eq. 49 into Eq. 25 yields

$$ \label{eq50} b_t -\overline b =\left( {\frac{\alpha \mu }{1-\mu }\left( {1-\frac{b_t }{\alpha }} \right)\frac{\tilde {c}_t^\gamma }{c_t }} \right)^{1 \mathord{\left/ {\vphantom {1 \eta }} \right. \kern-\nulldelimiterspace} \eta }. $$
(50)

In the quantitative analysis (Section 4), \(\overline b =0\). Thus,

$$ \label{eq51} b_t =\left( {\frac{\alpha \mu }{1-\mu }\left( {1-\frac{b_t }{\alpha }} \right)\frac{\tilde {c}_t^\gamma }{c_t }} \right)^{1 \mathord{\left/ {\vphantom {1 \eta }} \right. \kern-\nulldelimiterspace} \eta }. $$
(51)

Solving for \(\frac{\tilde {c}_t^\gamma }{c_t }\) yields

$$ \label{eq52} \frac{\tilde {c}_t^\gamma }{c_t }=b_t^\eta \frac{\left( {1-\mu } \right)}{\mu }\frac{1}{\left( {\alpha -b_t } \right)}. $$
(52)

Suppose that γ is known, then we can define a new variable, \(\hat {c}_t \equiv \frac{\tilde {c}_t^\gamma }{c_t }.\) Substituting this variable into Eq. 52 gives

$$ \label{eq53} \hat {c}_t =b_t^\eta \frac{\left( {1-\mu } \right)}{\mu }\frac{1}{\left( {\alpha -b_t } \right)}. $$
(53)

The population growth rate, n t , is equal to b t  − d t . Solving for b t from this expression and substituting into Eq. 53 yields

$$ \label{eq54} \hat {c}_t =\left( {n_t +d_t } \right)^\eta \frac{\left( {1-\mu } \right)}{\mu }\frac{1}{\left( {\alpha -n_t -d_t } \right)}. $$
(54)

Given the mortality function (Eq. 21) and the parameter values in Table 1, we can estimate η and μ for each initial guess of γ, given observations on per capita consumption and population growth rates.

Table 3 presents observations on per capita consumption and population growth rates. The first and two last observations are taken directly from Jones (2001). The second to fourth observations correspond to average levels of per capita consumption and average annual growth rates of the population over the periods 1870–1900, 1960–1970 and 1980–1990, respectively. The data are taken from Maddison (2007). Using a non-linear least squares method, we obtain the parameter values reported in Table 4.

Table 3 Observations on per capita consumption and population growth rates
Table 4 Estimated parameters of the utility function

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröling, M. Energy use, population and growth, 1800–1970. J Popul Econ 24, 1133–1163 (2011). https://doi.org/10.1007/s00148-009-0278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00148-009-0278-z

Keywords

JEL Classification

Navigation