Skip to main content
Log in

Aircraft classification with a low resolution infrared sensor

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Existing computer simulations of aircraft infrared signature (IRS) do not account for dispersion induced by uncertainty on input parameters, such as aircraft aspect angles and meteorological conditions. As a result, they are of little use to quantify the detection performance of IR optronic systems: in this case, the scenario encompasses a lot of possible situations that must indeed be considered, but cannot be individually simulated. In this paper, we focus on low resolution infrared sensors and we propose a methodological approach for predicting simulated IRS dispersion of an aircraft, and performing a classification of different aircraft on the resulting set of low resolution infrared images. It is based on a quasi-Monte Carlo survey of the code output dispersion, and on a maximum likelihood classification taking advantage of Bayesian dense deformable template models estimation. This method is illustrated in a typical scenario, i.e., a daylight air-to-ground full-frontal attack by a generic combat aircraft flying at low altitude, over a database of 30,000 simulated aircraft images. Assuming a spatially white noise background model, classification performance is very promising, and appears to be more accurate than more classical state of the art techniques (such as kernel-based support vector classifiers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johansson, M., Dalenbring, M.: SIGGE, a prediction tool for aeronautical IR signatures, and its applications. In: 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, vol. 3276. AIAA, California (2006)

  2. Rao, A., Mahulikar, S.P.: Aircraft powerplant and plume infrared signature modelling and analysis. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, vol. 221. AIAA, Nevada (2005)

  3. Noah, M., Kristl, J., Schroeder, J., Sandford, B.P.: NIRATAM-NATO Infrared Air Target Model. In: Gowrinathan, S., Mataloni, R.J., Schwartz, S.J. (eds.) Surveillance Technologies. Proceedings of SPIE, vol. 1479, pp. 275–282 (1991)

  4. Gauffre G.: Aircraft infrared radiation modeling. Rech. Aerosp. 4, 245–265 (1981)

    Google Scholar 

  5. Lefebvre S., Roblin A., Varet S., Durand G.: A methodological approach for statistical evaluation of aircraft infrared signature. Reliab. Eng. Syst. Safety 95, 484–493 (2010)

    Article  Google Scholar 

  6. Jakubowicz J., Lefebvre S., Maire F., Moulines E.: Detecting aircrafts with a low resolution infrared sensor. IEEE Trans. Image Process. 21, 3034–3041 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chanussot J., Benediktsson J.-A., Fauvel M., Tarabalka Y.: Spectral-spatial analysis in hyperspectral remote sensing: from morphological profiles to classified segmentation. Proc. SPIE 7477, 13 (2009)

    Google Scholar 

  8. Gualtieri J.A., Cromp R.F.: Support Vector Machines for hyperspectral remote sensing classification. Proc. SPIE 3584, 221–232 (1998)

    Article  Google Scholar 

  9. Camps-Valls G., Gomez-Chova L., Munõz-Marí J., Vila-Francés J., Calpe-Maravilla J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3, 93–97 (2006)

    Article  Google Scholar 

  10. Chef d’Hotel C., Hermosillo G., Faugeras O.: Variational methods for multimodal image matching. Int. J. Comput. Vis. 50, 329–343 (2002)

    Article  Google Scholar 

  11. Glaunès, J., Joshi, S.: Template estimation form unlabeled point set data and surfaces for computational anatomy. In: Pennec, X., Joshi, S. (eds.) Proceedings of the International Workshop of the Mathematical Foundations of Computational Anatomy, pp. 29–39 (2006)

  12. Glasbey C.A., Mardia K.V.: A penalised likelihood approach to image warping. J. R. Stat. Soc. Ser. B 63, 465–492 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cootes, T.F., Edwards, G.J., Taylor, C.J. Actives appearance models. In: Burkhards, H., Neumann, B. (eds.) 5th European Conference on Computer Vision, vol. 2, pp. 484–498. Springer, Berlin (1998)

  14. Marsland S., Twining C.J., Taylor C.J.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26, 333–346 (2008)

    Article  Google Scholar 

  15. Amit Y., Grenander U., Piccioni M.: Structural image restoration through deformable template. J. Am. Stat. Assoc. 86, 376–387 (1991)

    Article  Google Scholar 

  16. Winn, J., Jojic, N.: LOCUS: Learning Object Classes with Unsupervised Segmentation. In: Proc. IEEE Intl. Conf. on Computer Vision, Beijing (2005)

  17. Allassonnière S., Amit Y., Trouvé A.: Toward a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. 69, 3–29 (2007)

    Article  Google Scholar 

  18. Allassonnière S., Kuhn E., Trouvé A.: Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16, 641–678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tuffin, B.: Simulation accélérée par les méthodes de Monte Carlo et Quasi-Monte Carlo: théorie et application. PhD in Applied Mathematics, University of Rennes 1, (1997)

  20. Tezuka S., Faure H.: I-binomial scrambling of digital nets and sequences. J. Complex. 19, 744–757 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning. Springer, NY (2001)

    MATH  Google Scholar 

  22. Delyon B., Lavielle M., Moulines E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. McLachlan G.J., Krishnan T.: The EM Algorithm and Extensions. Wiley, NY (2008)

    Book  MATH  Google Scholar 

  24. Allassonnière, S.: Representation and Statistical Estimation of Deformable Template Models for Shape Recognition and Computational Anatomy. PhD in Mathematics, University of Paris XIII (2007)

  25. Allassonnière S., Kuhn E.: Stochastic algorithm for Bayesian mixture effect template estimation. ESAIM-PS 14, 382–408 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidonie Lefebvre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefebvre, S., Allassonnière, S., Jakubowicz, J. et al. Aircraft classification with a low resolution infrared sensor. Machine Vision and Applications 24, 175–186 (2013). https://doi.org/10.1007/s00138-012-0437-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-012-0437-1

Keywords

Navigation