Skip to main content
Log in

An innovative methodology for detection and quantification of cracks through incorporation of depth perception

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Visual inspection of structures is a highly qualitative method in which inspectors visually assess a structure’s condition. If a region is inaccessible, binoculars must be used to detect and characterize defects. Although several Non-Destructive Testing methods have been proposed for inspection purposes, they are nonadaptive and cannot quantify crack thickness reliably. In this paper, a contact-less remote-sensing crack detection and quantification methodology based on 3D scene reconstruction (computer vision), image processing, and pattern recognition concepts is introduced. The proposed approach utilizes depth perception to detect cracks and quantify their thickness, thereby giving a robotic inspection system the ability to analyze images captured from any distance and using any focal length or resolution. This unique adaptive feature is especially useful for incorporating mobile systems, such as unmanned aerial vehicles, into structural inspection methods since it would allow inaccessible regions to be properly inspected for cracks. Guidelines are presented for optimizing the acquisition and processing of images, thereby enhancing the quality and reliability of the damage detection approach and allowing the capture of even the slightest cracks (e.g., detection of 0.1 mm cracks from a distance of 20 m), which are routinely encountered in realistic field applications where the camera-object distance and image contrast are not controllable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abas, F.S., Martinez, K.: Classification of painting cracks for content-based analysis. In: Proceedings of the SPIE—The International Society for Optical Engineering, vol. 5011, pp. 149–160. Santa Clara, CA (2003)

  2. Abdel-Qader I., Abudayyeh O., Kelly M.E.: Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civ. Eng. 17(4), 255–263 (2003)

    Article  Google Scholar 

  3. Abdel-Qader I., Pashaie-Rad S., Abudayyeh O., Yehia S.: PCA-based algorithm for unsupervised bridge crack detection. Adv. Eng. Softw. 37(12), 771–778 (2006)

    Article  Google Scholar 

  4. Benning, W., Lange, J., Schwermann, R., Effkemann, C.: Monitoring crack origin and evolution at concrete elements using photogrammetry. In: Proceedings of XXth congress of ISPRS (International society for Photogrammetry and remote sensing), pp. 678–683 (2004)

  5. Bouguet, J.Y.: Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calibdoc/index.html (2008)

  6. Chae, M.J.: Automated interpretation and assessment of sewer pipeline. Ph.D. thesis, Purdue University (2001)

  7. Chen L.C., Shao Y.C., Jan H.H., Huang C.W., Tien Y.M.: Measuring system for cracks in concrete using multitemporal images. J. Surv. Eng. 132(2), 77–82 (2006)

    Article  Google Scholar 

  8. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). http://doi.acm.org/10.1145/358669.358692

  9. Fisher R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Article  Google Scholar 

  10. Fujita, Y., Hamamoto, Y.: A robust automatic crack detection method from noisy concrete surfaces. Mach. Vis. Appl. 22, 245–254 (2011). doi:10.1007/s00138-009-0244-5

    Google Scholar 

  11. Giakoumis I., Nikolaidis N., Pitas I.: Digital image processing techniques for the detection and removal of cracks in digitized paintings. IEEE Trans. Image Process. 15(1), 178–188 (2006)

    Article  Google Scholar 

  12. Jahanshahi, M.R., Masri, S.F., Sukhatme, G.S.: Multi-image stitching and scene reconstruction for evaluating defect evolution in structures. Struct. Health Monit. (2011). doi:10.1177/1475921710395809

  13. Jahanshahi M.R., Kelly J.S., Masri S.F., Sukhatme G.S.: A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures. Struct. Infrastruct. Eng. 5(6), 455–486 (2009). doi:10.1080/15732470801945930

    Article  Google Scholar 

  14. Kaseko M.S., Lo Z.P., Ritchie S.G.: Comparison of traditional and neural classifiers for pavement-crack detection. J. Transp. Eng. 120(4), 552–569 (1994)

    Article  Google Scholar 

  15. Lowe D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Compu. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Matheron G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  17. McCrea A., Chamberlain D., Navon R.: Automated inspection and restoration of steel bridges—a critical review of methods and enabling technologies. Autom. Constr. 11(4), 351–373 (2002)

    Article  Google Scholar 

  18. Minkowski H.: Volumen und oberfläche. Math. Ann. 57(4), 447–495 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moselhi O., Shehab-Eldeen T.: Classification of defects in sewer pipes using neural networks. J. Infrastruct. Syst. 6(3), 97–104 (2000)

    Article  Google Scholar 

  20. Nieniewski M., Chmielewski L., Jozwik A., Sklodowski M.: Morphological detection and feature-based classification of cracked regions in ferrites. Mach. Graph. Vis. 8(4), 699–712 (1999)

    Google Scholar 

  21. Otsu N.: A threshold selection method from gray-level histogrmas. IEEE Trans. Syst. Man. Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  22. Salembier, P.: Comparison of some morphological segmentation algorithms based on contrast enhancement. Application to automatic defect detection. In: Proceedings of the EUSIPCO-90—Fifth European Signal Processing Conference, pp. 833–836 (1990)

  23. Siegel, M., Gunatilake, P.: Remote enhanced visual inspection of aircraft by a mobile robot. In: IEEE Workshop on Emerging Technologies, Intelligent Measurement and Virtual Systems for Instrumentation and Measurement—ETIMVIS’98. St. Paul, MN (1998)

  24. Sinha S.K., Fieguth P.W.: Morphological segmentation and classification of underground pipe images. Mach. Vis. Appl. 17(1), 21–31 (2006)

    Article  Google Scholar 

  25. Sinha S.K., Fieguth P.W., Polak M.A.: Computer vision techniques for automatic structural assessment of underground pipes. Comput. Aided Civ. Infrastruct. Eng 18(2), 95–112 (2003)

    Article  Google Scholar 

  26. Snavely, K.N.: Scene reconstruction and visualization from internet photo collections. Ph.D. thesis, University of Washington, Seattle, Washington, USA (2008)

  27. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH Conference Proceedings, pp. 835–846. ACM Press, New York (2006)

  28. Tsao S., Kehtarnavaz N., Chan P., Lytton R.: Image-based expert-system approach to distress detection on CRC pavement. J. Transp. Eng. 120(1), 62–64 (1994)

    Article  Google Scholar 

  29. Wang, K.C., Nallamothu, S., Elliott, R.P.: Classification of pavement surface distress with an embedded neural net chip. In: Artificial Neural Networks for Civil Engineers: Advanced Features and Applications, pp. 131–161. ASCE, (1998)

  30. Yamaguchi T., Hashimoto S.: Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach. Vis. Appl. 21, 797–809 (2010). doi:10.1007/s00138-009-0189-8

    Article  Google Scholar 

  31. Yu S.N., Jang J.H., Han C.S.: Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 16(3), 255–261 (2007)

    Article  Google Scholar 

  32. Zhu, Z., German, S., Brilakis, I.: Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation. Autom. Constr. 20(7), 874–883 (2011). doi:10.1016/j.autcon.2011.03.004; http://www.sciencedirect.com/science/article/pii/S0926580511000318

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahanshahi, M.R., Masri, S.F., Padgett, C.W. et al. An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Machine Vision and Applications 24, 227–241 (2013). https://doi.org/10.1007/s00138-011-0394-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0394-0

Keywords

Navigation