Skip to main content

Advertisement

Log in

Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To determine whether hyperglycemia exerts deleterious effects via cerebral energy metabolism and to illuminate the effects of cerebral high/low glucose in patients with aneurysmal subarachnoid hemorrhage.

Design and setting

Prospective, nonrandomized single-center study over a 2-year period in an intensive care unit at a primary-level university hospital.

Patients

28 subarachnoid hemorrhage patients (age 53 ± 10 years, WFNS grade 2.8 ± 1.5) classified as asymptomatic (n = 5) or symptomatic with acute focal or delayed ischemic neurological deficits (n = 23).

Measurements and results

Hyperglycemia (> 7.8 mmol/l; > 140 mg/dl) was more frequent in symptomatic patients and was reflected in higher glycerol concentrations than in asymptomatic patients. In all patients a microdialysis catheter was inserted into the tissue at risk; dialysates were collected hourly for 10 days. Cerebral low-glucose episodes (< 0.6 mmol/l) and high-glucose episodes (> 2.6 mmol/l) occurred independently of blood glucose levels. During high-glucose episodes cerebral microdialysate levels were normal, while cerebral low glucose, occurring more frequently in symptomatic patients, was associated with severe cellular distress (increase in lactate/pyruvate ratio, glutamate, glycerol) and with unfavorable outcome if combined with hyperglycemia.

Conclusions

Although hyperglycemia was more frequent in symptomatic patients and associated with high glycerol levels, hyperglycemia was not related to cerebral high glucose. It appears that the association of adverse outcome with acute-phase hyperglycemia is not mediated by cerebral glucose metabolism. Cerebral low glucose was associated with severe metabolic distress and may present a target for therapy to improve clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lanzino G, Kassell NF, Germanson T, Truskowski L, Alves W (1993) Plasma glucose levels and outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 79:885–891

    PubMed  CAS  Google Scholar 

  2. Alberti O, Becker R, Benes L, Wallenfang T, Bertalanffy H (2000) Initial hyperglycemia as an indicator of severity of the ictus in poor-grade patients with spontaneous subarachnoid hemorrhage. Clin Neurol Neurosurg 102:78–83

    Article  PubMed  CAS  Google Scholar 

  3. Frontera JA, Fernandez A, Claassen J, Schmidt M, Schumacher HC, Wartenberg K, Temes R, Parra A, Ostapkovich ND, Mayer SA (2006) Hyperglycemia after SAH: predictors, associated complications, and impact on outcome. Stroke 37:199–203

    Article  PubMed  Google Scholar 

  4. Seaquist ER, Damberg GS, Tkac I, Gruetter R (2001) The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 50:2203–2209

    Article  PubMed  CAS  Google Scholar 

  5. Bell DA, Strong AJ (2005) Glucose/insulin infusions in the treatment of subarachnoid haemorrhage: a feasibility study. Br J Neurosurg 19:21–24

    Article  PubMed  CAS  Google Scholar 

  6. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21:894–906

    Article  PubMed  Google Scholar 

  7. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR (2001) Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 94:740–749

    PubMed  CAS  Google Scholar 

  8. Hutchinson PJ, Gupta AK, Fryer TF, Al-Rawi PG, Chatfield DA, Coles JP, O'Connell MT, Kett-White R, Minhas PS, Aigbirhio FI, Clark JC, Kirkpatrick PJ, Menon DK, Pickard JD (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745

    Article  PubMed  Google Scholar 

  9. Ungerstedt U (1991) Microdialysis-principles and applications for studies in animals and man. J Intern Med 230:365–373

    PubMed  CAS  Google Scholar 

  10. Kerner A, Schlenk F, Sakowitz O, Haux D, Sarrafzadeh A (2007) Impact of hyperglycemia on neurological deficits and extracellular glucose levels in aneurysmal subarachnoid hemorrhage patients. Neurol Res 29:647–653

    Article  PubMed  CAS  Google Scholar 

  11. Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9

    Article  PubMed  CAS  Google Scholar 

  12. Drake C (1988) Report of World Federation of Neurological Surgeons Committee on a Universal Subarachnoid Hemorrhage Grading Scale. J Neurosurg 68:985–986

    Google Scholar 

  13. Lanzino G, Kassell NF (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. II. A cooperative study in North America. J Neurosurg 90:1018–1024

    PubMed  CAS  Google Scholar 

  14. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet I:480–484

    Article  Google Scholar 

  15. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–709

    Article  PubMed  CAS  Google Scholar 

  16. Hutchinson PJ, O'Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, Richards HK, Hutchinson DB, Kirkpatrick PJ, Pickard JD (2000) Clinical cerebral microdialysis: a methodological study. J Neurosurg 93:37–43

    PubMed  CAS  Google Scholar 

  17. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

    Article  PubMed  CAS  Google Scholar 

  18. Sarrafzadeh A, Haux D, Kuchler I, Lanksch WR, Unterberg AW (2004) Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg 100:400–406

    PubMed  Google Scholar 

  19. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW (2002) Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 30:1062–1070

    Article  PubMed  Google Scholar 

  20. Robertson CS, Clifton GL, Grossman RG, Ou CN, Goodman JC, Borum P, Bejot S, Barrodale P (1988) Alterations in cerebral availability of metabolic substrates after severe head injury. J Trauma 28:1523–1532

    PubMed  CAS  Google Scholar 

  21. Wass CT, Lanier WL (1996) Glucose modulation of ischemic brain injury: review and clinical recommendations. Mayo Clin Proc 71:801–812

    PubMed  CAS  Google Scholar 

  22. Badjatia N, Topcuoglu MA, Buonanno FS, Smith EE, Nogueira RG, Rordorf GA, Carter BS, Ogilvy CS, Singhal AB (2005) Relationship between hyperglycemia and symptomatic vasospasm after subarachnoid hemorrhage. Crit Care Med 33:1603–1609

    Article  PubMed  Google Scholar 

  23. Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F, Wouters PJ (2005) Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 64:1348–1353

    Google Scholar 

  24. Berek K, Kiechl S, Pfausler B, Auckenthaler A, Schmutzhard E (1992) Prognostic indices in subarachnoid haemorrhage. Lancet 339:68

    Article  PubMed  CAS  Google Scholar 

  25. Woo E, Ma JT, Robinson JD, Yu YL (1988) Hyperglycemia is a stress response in acute stroke. Stroke 19:1359–1364

    PubMed  CAS  Google Scholar 

  26. Schurr A, Payne RS, Miller JJ, Tseng MT (2001) Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone release is detrimental. J Neurosci Res 66:782–789

    Article  PubMed  CAS  Google Scholar 

  27. Berger L, Hakim AM (1986) The association of hyperglycemia with cerebral edema in stroke. Stroke 17:865–871

    PubMed  CAS  Google Scholar 

  28. Song EC, Chu K, Jeong SW, Jung KH, Kim SH, Kim M, Yoon BW (2003) Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke 34:2215–2220

    Article  PubMed  CAS  Google Scholar 

  29. Fein JM, Flor WJ, Cohan SL, Parkhurst J (1974) Sequential changes of vascular ultrastructure in experimental cerebral vasospasm. Myonecrosis of subarachnoid arteries. J Neurosurg 41:49–58

    PubMed  CAS  Google Scholar 

  30. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32:2426–2432

    Article  PubMed  CAS  Google Scholar 

  31. Allport LE, Butcher KS, Baird TA, MacGregor L, Desmond PM, Tress BM, Colman P, Davis SM (2004) Insular cortical ischemia is independently associated with acute stress hyperglycemia. Stroke 35:1886–1891

    Article  PubMed  Google Scholar 

  32. Hamlin GP, Cernak I, Wixey JA, Vink R (2001) Increased expression of neuronal glucose transporter 3 but not glial glucose transporter 1 following severe diffuse traumatic brain injury in rats. J Neurotrauma 18:1011–1018

    Article  PubMed  CAS  Google Scholar 

  33. Oertel MF, Schwedler M, Stein M, Wachter D, Scharbrodt W, Schmidinger A, Boker DK (2007) Cerebral energy failure after subarachnoid hemorrhage: the role of relative hyperglycolysis. J Clin Neurosci 14:948–954

    Article  PubMed  CAS  Google Scholar 

  34. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, McArthur DL, Caron MJ, Kraus JF, Becker DP (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86:241–251

    PubMed  CAS  Google Scholar 

  35. Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, Martin NA, Becker DP (1998) Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 89:971–982

    PubMed  CAS  Google Scholar 

  36. Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, Glenn T, Martin N, Hovda D (2006) Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 34:850–856

    Article  PubMed  CAS  Google Scholar 

  37. Vespa PM, McArthur D, O'Phelan K, Glenn T, Etchepare M, Kelly D, Bergsneider M, Martin NA, Hovda DA (2003) Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 23:865–877

    Article  PubMed  CAS  Google Scholar 

  38. Parkin M, Hopwood S, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413

    Article  PubMed  CAS  Google Scholar 

  39. Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, Sakowitz OW, Seemann JH, Thieme A, Lauritzen M, Strong AJ (2006) Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129:3224–3237

    Article  PubMed  Google Scholar 

  40. Dreier JP, Ebert N, Priller J, Megow D, Lindauer U, Klee R, Reuter U, Imai Y, Einhaupl KM, Victorov I, Dirnagl U (2000) Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg 93:658–666

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Sabine Seidlitz and Jasmin Kopetzki, our colleagues, and the nursing staff of the interdisciplinary intensive care unit for excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asita S. Sarrafzadeh.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-008-1045-4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlenk, F., Nagel, A., Graetz, D. et al. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med 34, 1200–1207 (2008). https://doi.org/10.1007/s00134-008-1044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1044-5

Keywords

Navigation