Skip to main content

Advertisement

Log in

Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Reactive oxygen species have been implicated in the pathogenesis of hypoxia–reoxygenation injury. However, little information is known regarding the temporal profile of cerebral hydrogen peroxide (HPO) production and its response to N-acetylcysteine (an antioxidant) administration during neonatal hypoxia–reoxygenation. Using an acute swine model of neonatal hypoxia–reoxygenation, we examined the short-term neuroprotective effects of N-acetylcysteine on cerebral HPO production and oxidative stress in the brain.

Design

Controlled, block-randomized animal study.

Setting

University animal research laboratory.

Subjects

Newborn piglets (1–3 days, 1.7–2.1 kg).

Interventions

At 5 min after reoxygenation, piglets were given either saline or N-acetylcysteine (20 or 100 mg/kg/h) in a blinded, randomized fashion.

Measurements and results

Newborn piglets were block-randomized into a sham-operated group (without hypoxia–reoxygenation, n = 5) and three hypoxic–reoxygenated groups (2 h of normocapnic alveolar hypoxia followed by 2 h of reoxygenation, n = 7/group). Heart rate, mean arterial pressure, cortical HPO concentration, amino acid levels in cerebral microdialysate, and cerebral tissue glutathione and lipid hydroperoxide levels were examined. Hypoxic piglets were hypotensive and acidotic, and they recovered similarly in all hypoxic–reoxygenated groups. In hypoxic–reoxygenated control piglets, the cortical HPO concentration gradually increased during reoxygenation. Both doses of N-acetylcysteine abolished the increased HPO concentration and oxidized glutathione levels and tended to reduce the glutathione ratio and lipid hydroperoxide levels in the cerebral cortex (p = 0.08 and p = 0.1 vs. controls, respectively). N-acetylcysteine at 100 mg/kg/h also increased the cerebral extracellular taurine levels.

Conclusion

In newborn piglets with hypoxia–reoxygenation, postresuscitation administration of N-acetylcysteine reduces cerebral HPO production and oxidative stress, probably through a taurine-related mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Richter-Landsberg C, Vollgraf U (1998) Mode of cell injury and death after hydrogen peroxide exposure in cultured oligodendroglia cells. Exp Cell Res 244:218–229

    Article  PubMed  CAS  Google Scholar 

  2. Whittemore ER, Loo DT, Watt JA, Cotman CW (1995) A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67:921–932

    Article  PubMed  CAS  Google Scholar 

  3. Lafemina MJ, Sheldon RA, Ferriero ADM (2006) Acute hypoxia–ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res 59:680–683

    Article  PubMed  CAS  Google Scholar 

  4. Fullerton HJ, Ditelberg JS, Chen SF, Sarco DP, Chan PH, Epstein CJ, Ferriero DM (1998) Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol 44:357–364

    Article  PubMed  CAS  Google Scholar 

  5. Lei B, Adachi N, Arai T (1997) The effect of hypothermia on H2O2 production during ischemia and reperfusion: a microdialysis study in the gerbil hippocampus. Neurosci Lett 222:91–94

    Article  PubMed  CAS  Google Scholar 

  6. Patt A, Harken AH, Burton LK, Rodell TC, Piermattei D, Schorr WJ, Parker NB, Berger EM, Horesh IR, Terada LS (1988) Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J Clin Invest 81:1556–1562

    Article  PubMed  CAS  Google Scholar 

  7. Banaclocha MM (2001) Therapeutic potential of N-acetylcysteine in age-related mitochondrial neurodegenerative diseases. Med Hypo 56:472–477

    Article  CAS  Google Scholar 

  8. Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20

    Article  PubMed  CAS  Google Scholar 

  9. Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, Sekhon C, Singh I, Singh AK (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in rat model of experimental stroke. J Neurosci Res 76:519–527

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Svedin P, Nie C, Lapatto R, Zhu C, Gustavsson M, Sandberg M, Karlsson JO, Romero R, Hagberg H, Mallard C (2007) N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 61:263–271

    Article  PubMed  CAS  Google Scholar 

  11. Lee TF, Jantzie LL, Todd KG, Cheung P-Y (2007) Postresuscitation administration of N-acetylcysteine attenuates cerebral free radical generation during reoxygenation of hypoxic newborn piglets. E-PAS:618443.8 (abstract)

  12. Ortalani O, Conti A, De Gaudio AR, Moraldi E, Cantini Q, Novelli G (2000) The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock. Am J Respir Crit Care Med 161:1907–1911

    Google Scholar 

  13. Haase E, Bigam DL, Nakonechny QB, Jewell LD, Korbutt G, Cheung PY (2004) Resuscitation with 100% oxygen causes intestinal glutathione oxidation and reoxygenation injury in asphyxiated newborn piglets. Ann Surg 240:364–373

    Article  PubMed  Google Scholar 

  14. Martin LJ, Brambrink A, Koehler RC, Traystman RJ (1997) Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia–ischemia. J Comp Neurol 377:262–285

    Article  PubMed  CAS  Google Scholar 

  15. Richards JG, Todd KG, Emara M, Haase E, Cooper SL, Bigam DL, Cheung PY (2006) A dose-response study of graded reoxygenation on the carotid haemodynamics, matrix metalloproteinase-2 activities and amino acid concentrations in the brain of asphyxiated newborn piglets. Resuscitation 69:319–327

    Article  PubMed  CAS  Google Scholar 

  16. Johnson ST, Bigam DL, Emara M, Obaid L, Slack G, Korbutt G, Korbutt G, Jewell LD, Van Aerde J, Cheung PY (2007) N-acetylcysteine improves the hemodynamics and oxidative stress in hypoxic newborn pigs reoxygenated with 100% oxygen. Shock 2007 Jun 17 [Epub ahead of print]

  17. Jantzie LL, Rauw GA, Todd KG (2006) The effects of doxycycline administration on amino acid neurotransmitters in an animal model of neonatal hypoxia–ischemia. Neurochem Inter 49:771–728

    Google Scholar 

  18. Parent M, Bush D, Rauw G, Master S, Vaccarino F, Baker G (2001) Analysis of amino acids and catecholamines, 5-hydroxytryptamine and their metabolites in brain areas in the rat using in vivo microdialysis. Methods 23:11–20

    Article  PubMed  CAS  Google Scholar 

  19. Hyslop PA, Zhang Z, Pearson DV, Phebus LA (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with cytotoxic potential of H2O2 in vitro. Brain Res 671:181–186

    Article  PubMed  CAS  Google Scholar 

  20. Lei B, Adachi N, Arai T (1998) Measurement of the extracellular H2O2 in the brain by microdialysis. Brain Res Protoc 3:33–36

    Article  CAS  Google Scholar 

  21. Kutzsche S, Ilves P, Kirkeby OJ, Saugstad OD (2001) Hydrogen peroxide production in leukocytes during cerebral hypoxia and reoxygenation with 100% or 21% oxygen in newborn piglets. Pediatr Res 49:834–842

    Article  PubMed  CAS  Google Scholar 

  22. Sprong RC, Winkelhuyzen-Janssen AM, Aarsman CJ, van Oirschot JF, van der Bruggen T, van Asbeck BS (1998) Low dose N-acetylcysteine protects rats against endotoxin-mediated oxidative stress, but high-dose increase mortality. Am J Respir Crit Care Med 157:1283–1293

    PubMed  CAS  Google Scholar 

  23. Szkudlarek U, Zdziechowski A, Witkowski K, Kasielski M, Luczynska M, Luczynski R, Sarniak A, Nowak D (2004) Effect of inhaled N-acetylcysteine on hydrogen peroxide exhalation in healthy subjects. Pulm Pharmacol Ther 17:155–162

    Article  PubMed  CAS  Google Scholar 

  24. Palmer C, Menzies SL, Roberts RL, Pavlick G, Connor JR (1999) Changes in iron histochemistry after hypoxic-ischemic brain injury in neonatal rat. J Neurosci Res 56:60–71

    Article  PubMed  CAS  Google Scholar 

  25. Caglikulekci M, Dirlik M, Pata C, Plasse M, Tamer L, Ogetman Z, Ercan B (2006) Effect of N-acetylcysteine on blood and tissue lipid peroxidation in lipopolysaccharide-induced obstructive jaundice. J Invest Surg 19:175–184

    Article  PubMed  Google Scholar 

  26. Kingston R, Kelly CJ, Murray P (2004) The therapeutic role of taurine in ischemia–reperfusion injury. Curr Pharm Design 10:2401–2410

    Article  CAS  Google Scholar 

  27. Estevez AY, O'Regan MH, Song D, Phillis JW (1999) Effects of anion channel blockers on hyposmotically induced amino acid release from the in vivo rat cerebral cortex. Neurochem Res 24:447–452

    Article  PubMed  CAS  Google Scholar 

  28. Andine P, Sandberg M, Bagenholm R, Lehmann A, Hagberg H (1991) Intra- and extracellular changes of amino acids in the cerebral cortex of the neonatal rat during hypoxic-ischemia. Brain Res Dev Brain Res 64:115–120

    Article  PubMed  CAS  Google Scholar 

  29. Huppi PS, Posse S, Lazeyras F, Burri R, Bossi E, Herschkowitz N (1991) Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 30:574–578

    PubMed  CAS  Google Scholar 

  30. Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A (2004) Low plasma taurine and later neurodevelopment. Arch Dis Child Fetal Neonatal Ed 89:F497–498

    Article  PubMed  CAS  Google Scholar 

  31. Cortijo J, Cerda-Nicolas M, Serrano A, Bioque G, Estrela JM, Santangelo F, Esteras A, Llombart-Bosch A, Morcillo EJ (2001) Attenuation by oral N-acetylcysteine of bleomycin-induced lung injury in rats. Eur Respir J 17:1228–1235

    Article  PubMed  CAS  Google Scholar 

  32. Muhling J, Nickolaus KA, Halabi M, Fuchs M, Krull M, Engel J, Wolff M, Matejec R, Langefeld TW, Welters ID, Menges T, Dehne MG, Sablotzki A, Hempelmann G (2005) Alterations in neutrophil (PMN) free intracellular alpha-keto a profiles and immune functions induced by L-alanyl-L-glutamine, arginine or taurine. Amino Acids 29:289–300

    Article  PubMed  CAS  Google Scholar 

  33. Sekhon B, Sehkon C, Khan M, Patel SJ, Singh I, Singh AK (2003) N-acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res 971:1–8

    Article  PubMed  CAS  Google Scholar 

  34. Zhang QG, Tian H, Li HC, Zhang GY (2006) Antioxidant N-acetylcysteine inhibits the activation of JNK3 mediated by the GluR6-PSD95-MLK3 signaling module during cerebral ischemia in rat hippocampus. Neurosci Lett 408:159–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by an operating grant from the Canadian Institutes of Health Research (MOP-CSB-53009) and a grant-in-aid from the George and Dorothy Davey Endowment for Brain Injury Research. P.Y.C. is an investigator with the Canadian Institutes of Health Research and the Alberta Heritage Foundation for Medical Research. L.L.J. is a recipient of a Canada Graduate Scholarship from the Natural Science and Engineering Research Council of Canada and a doctoral research award from the Alberta Heritage Foundation of Medical Research. There is no financial conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Yin Cheung.

Additional information

We are very grateful to Corinne Cote for her excellent assistance and technical expertise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TF., Jantzie, L.L., Todd, K.G. et al. Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain. Intensive Care Med 34, 190–197 (2008). https://doi.org/10.1007/s00134-007-0880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0880-z

Keywords

Navigation