Skip to main content
Log in

Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

We compared brain tissue oxygen tension (PtiO2) measured in peri-focal and in normal-appearing brain parenchyma on computerized tomography (CT) in patients following traumatic brain injury (TBI).

Design

Prospective observational study.

Setting

Neurointensive care unit.

Patients and participants

Thirty-two consecutive TBI patients were subjected to PtiO2 monitoring.

Interventions

Peri-focal tissue was identified by the presence of a hypodense area of the contusion and/or within 1 cm from the core of the contusion. The position of the tip of the PtiO2 probe was assessed at follow-up CT scan.

Measurements and results

Mean PtiO2 in the peri-contusional tissue was 19.7 ± 2.1 mmHg and was lower than PtiO2 in normal-appearing tissue (25.5 ± 1.5 mmHg, p < 0.05), despite a greater cerebral perfusion pressure (CPP) (73.7 ± 2.3 mmHg vs. 67.4 ± 1.4 mmHg, p < 0.05). We observed both in peri-focal tissue and in normal-appearing tissue episodes of brain hypoxia (PtiO2 < 20 mmHg for at least 10 min), whose median duration was longer in peri-focal tissue than in normal-appearing tissue (51% vs. 34% of monitoring time, p < 0.01). In peri-focal tissue, we observed a progressive PtiO2 increase from pathologic to normal values (p < 0.01).

Conclusions

Multiple episodes of brain hypoxia occurred over the first 5 days following severe TBI. PtiO2 was lower in peri-contusional tissue than in normal-appearing tissue. In peri-contusional tissue, a progressive increase of PtiO2 from pathologic to normal values was observed over time, suggestive of an improvement at microcirculatory level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anonymous (1999) Consensus conference. Rehabilitation of persons with traumatic brain injury. NIH Consensus Development Panel on Rehabilitation of Persons With Traumatic Brain Injury. JAMA 282:974–983

    Article  Google Scholar 

  2. Brain Trauma Foundation (2007) Guidelines for the Management of Severe Traumatic Brain Injury. J Neurotrauma 24 [Suppl 1]:S1–S95

    Article  Google Scholar 

  3. Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75:685–693

    PubMed  CAS  Google Scholar 

  4. Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, McLellan DR (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52:346–350

    PubMed  CAS  Google Scholar 

  5. Yamakami I, McIntosh TK (1989) Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. J Cereb Blood Flow Metab 9:117–124

    PubMed  CAS  Google Scholar 

  6. Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, Downey SP, Williams GB, Aigbirhio F, Hutchinson PJ, Rice K, Carpenter TA, Clark JC, Pickard JD, Menon DK (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24:202–211

    Article  PubMed  Google Scholar 

  7. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, McArthur DL, Caron MJ, Kraus JF, Becker DP (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86:241–251

    PubMed  CAS  Google Scholar 

  8. Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, Hovda DA, Bergsneider M, Hillered L, Martin NA (2003) Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 23:1239–1250

    Article  PubMed  CAS  Google Scholar 

  9. Hutchinson PJ, Gupta AK, Fryer TF, Al Rawi PG, Chatfield DA, Coles JP, O'Connell MT, Kett-White R, Minhas PS, Aigbirhio FI, Clark JC, Kirkpatrick PJ, Menon DK, Pickard JD (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745

    Article  PubMed  Google Scholar 

  10. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87:9–19

    PubMed  CAS  Google Scholar 

  11. Haitsma IK, Maas AI (2002) Advanced monitoring in the intensive care unit: brain tissue oxygen tension. Curr Opin Crit Care 8:115–120

    Article  PubMed  Google Scholar 

  12. Gupta AK, Hutchinson PJ, Al Rawi P, Gupta S, Swart M, Kirkpatrick PJ, Menon DK, Datta AK (1999) Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg 88:549–553

    Article  PubMed  CAS  Google Scholar 

  13. Maas AI, Fleckenstein W, de Jong DA, van Santbrink H (1993) Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir Suppl (Wien) 59:50–57

    CAS  Google Scholar 

  14. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS (1998) Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 26:1576–1581

    Article  PubMed  CAS  Google Scholar 

  15. van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteeger C, Jansen WJ, Kloos LM, Vermeulen J, Maas AI (2000) Brain oxygen tension in severe head injury. Neurosurgery 46:868–876

    Article  PubMed  Google Scholar 

  16. van Santbrink H, Maas AI, Avezaat CJ (1996) Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 38:21–31

    Article  PubMed  Google Scholar 

  17. Zauner A, Doppenberg EM, Woodward JJ, Choi SC, Young HF, Bullock R (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41:1082–1091

    Article  PubMed  CAS  Google Scholar 

  18. Steiner LA, Coles JP, Johnston AJ, Czosnyka M, Fryer TD, Smielewski P, Chatfield DA, Salvador R, Aigbirhio FI, Clark JC, Menon DK, Pickard JD (2003) Responses of posttraumatic pericontusional cerebral blood flow and blood volume to an increase in cerebral perfusion pressure. J Cereb Blood Flow Metab 23:1371–1377

    Article  PubMed  Google Scholar 

  19. Johnston AJ, Steiner LA, Coles JP, Chatfield DA, Fryer TD, Smielewski P, Hutchinson PJ, O'Connell MT, Al Rawi PG, Aigbirihio FI, Clark JC, Pickard JD, Gupta AK, Menon DK (2005) Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 33:189–195

    Article  PubMed  Google Scholar 

  20. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 85:751–757

    Article  PubMed  CAS  Google Scholar 

  21. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD (2004) Diffusion limited oxygen delivery following head injury. Crit Care Med 32:1384–1390

    Article  PubMed  Google Scholar 

  22. Nortje J, Gupta AK (2006) The role of tissue oxygen monitoring in patients with acute brain injury. Br J Anaesth 97:95–106

    Article  PubMed  CAS  Google Scholar 

  23. Stiefel MF, Udoetuk JD, Spiotta AM, Gracias VH, Goldberg A, Maloney-Wilensky E, Bloom S, Le Roux PD (2006) Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurg 105:568–575

    PubMed  Google Scholar 

  24. Stocchetti N, Chieregato A, De Marchi M, Croci M, Benti R, Grimoldi N (1998) High cerebral perfusion pressure improves low values of local brain tissue O2 tension (PtiO2) in focal lesions. Acta Neurochir Suppl 71:162–165

    PubMed  CAS  Google Scholar 

  25. Zauner A, Daugherty WP, Bullock MR, Warner DS (2002) Brain oxygenation and energy metabolism. I. Biological function and pathophysiology. Neurosurgery 51:289–301

    Article  PubMed  Google Scholar 

  26. Marshall LF, Marshall SB, Klauber MR, Clark MvB, Eisenberg HM, Jane JA, Luerssen TG, Marmarou A, Foulkes MA (1991) A new classification of head injury based on computerized tomography. J Neurosurg [Suppl] 75

  27. Rose JC, Neill TA, Hemphill JC III (2006) Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation. Curr Opin Crit Care 12:97–102

    Google Scholar 

  28. Schroder ML, Muizelaar JP, Bullock MR, Salvant JB, Povlishock JT (1995) Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies. J Neurosurg 82:966–971

    PubMed  CAS  Google Scholar 

  29. Stein SC, Chen XH, Sinson GP, Smith DH (2002) Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg 97:1373–1377

    PubMed  Google Scholar 

  30. Longhi L, Valeriani V, Rossi S, De Marchi M, Egidi M, Stocchetti N (2002) Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir Suppl 81:315–317

    PubMed  CAS  Google Scholar 

  31. Stocchetti N, Longhi L (2004) Moving from macro- to microcirculation in head injury. Crit Care Med 32:1429–1430

    Article  PubMed  Google Scholar 

  32. Thomale UW, Kroppenstedt SN, Beyer TF, Schaser KD, Unterberg AW, Stover JF (2002) Temporal profile of cortical perfusion and microcirculation after controlled cortical impact injury in rats. J Neurotrauma 19:403–413

    Article  PubMed  Google Scholar 

  33. Jaeger M, Soehle M, Schuhmann MU, Winkler D, Meixensberger J (2005) Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen. Acta Neurochir (Wien) 147:51–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Angelo Colombo, MD for computer support, data processing and statistical advice; the students and nursing staff of the neurointensive care unit for their valuable cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Longhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longhi, L., Pagan, F., Valeriani, V. et al. Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Med 33, 2136–2142 (2007). https://doi.org/10.1007/s00134-007-0845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0845-2

Keywords

Navigation