Skip to main content

Advertisement

Log in

Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

Monitoring the injured brain is an integral part of the management of severely brain injured patients in intensive care. Brain-specific monitoring techniques enable focused assessment of secondary insults to the brain and may help the intensivist in making appropriate interventions guided by the various monitoring techniques, thereby reducing secondary brain damage following acute brain injury.

Discussion

This review explores methods of monitoring the injured brain in an intensive care unit, including measurement of intracranial pressure and analysis of its waveform, and techniques of cerebral blood flow assessment, including transcranial Doppler ultrasonography, laser Doppler and thermal diffusion flowmetry.

Conclusions

Various modalities are available to monitor the intracranial pressure and assess cerebral blood flow in the injured brain in intensive care unit. Knowledge of advantages and limitations of the different techniques can improve outcome of patients with acute brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABP:

arterial blood pressure

AMP:

amplitude of fundamental component of ICP waveform

CBF:

cerebral blood flow

CBV:

cerebral blood volume

CO2 :

carbon dioxide

CPP:

cerebral perfusion pressure

CSF:

cerebrospinal fluid

CT:

computerised tomography

DID:

delayed ischaemic neurological deficit

EDP:

effective downstream pressure

FV:

flow velocity

HDI:

haemodynamic impairment

ICP:

intracranial pressure

ICU:

intensive care unit

LDF:

laser Doppler flowmetry

MAP:

mean arterial pressure

MCA:

middle cerebral artery

MRI:

magnetic resonance imaging

nCPP:

non-invasively determined cerebral perfusion pressure

nICP:

non-invasive ICP measurement

PET:

positron emission tomography

PI:

pulsatility index

PRx:

pressure reactivity index

RI:

resistance index

RAP:

correlation of amplitude and pressure of ICP waveform

SAH:

subarachnoid haemorrhage

TBI:

traumatic brain injury

TCD:

transcranial Doppler

TD:

thermal diffusion

THRT:

transient hyperaemic response test

US:

ultrasound

ZFP:

zero flow pressure

References

  1. Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick PJ (2002) Specialist neurocritical care and outcome from head injury. Intensive Care Med 28:547–553

    Article  PubMed  Google Scholar 

  2. Maas AI, Dearden M, Servadei F, Stocchetti N, Unterberg A (2000) Current recommendations for neurotrauma. Curr Opin Crit Care 6:281–292

    Article  PubMed  Google Scholar 

  3. Sahjpaul R, Girotti M (2000) Intracranial pressure monitoring in severe traumatic brain injury—results of a Canadian survey. Can J Neurol Sci 27:143–147

    Article  CAS  PubMed  Google Scholar 

  4. Wilkins IA, Menon DK, Matta BF (2001) Management of comatose head-injured patients: are we getting any better? Anaesthesia 56:350–352

    Article  CAS  PubMed  Google Scholar 

  5. Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33:2207–2213

    Article  PubMed  Google Scholar 

  6. The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care (2000) Recommendations for intracranial pressure monitoring technology. J Neurotrauma 17:497–506

    Article  Google Scholar 

  7. Miller JD (1989) Measuring ICP in patients: its value now and in the future. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin Heidelberg New York, pp 5–15

    Chapter  Google Scholar 

  8. Bekar A, Goren S, Korfali E, Aksoy K, Boyaci S (1998) Complications of brain tissue pressure monitoring with a fibreoptic device. Neurosurg Rev 21:254–259

    Article  CAS  PubMed  Google Scholar 

  9. Czosnyka M, Czosnyka Z, Pickard JD (1996) Laboratory testing of three intracranial pressure microtransducers: technical report. Neurosurgery 38:219–224

    Article  CAS  PubMed  Google Scholar 

  10. Mack WJ, King RG, Ducruet AF, Kreiter K, Mocco J, Maghoub A, Mayer S, Connolly ES Jr (2003) Intracranial pressure following aneurysmal subarachnoid hemorrhage: monitoring practices and outcome data. Neurosurg Focus 14:1–5

    Article  Google Scholar 

  11. Ghajar J (1995) Intracranial pressure monitoring techniques. New Horiz 3:395–399

    CAS  PubMed  Google Scholar 

  12. Stendel R, Heidenreich J, Schilling A, Akhavan-Sigari R, Kurth R, Picht T, Pietila T, Suess O, Kern C, Meisel J, Brock M (2003) Clinical evaluation of a new intracranial pressure monitoring device. Acta Neurochir (Wien) 145:185–193

    Article  CAS  Google Scholar 

  13. Morgalla MH, Cuno M, Mettenleiter H, Will BE, Krasznai L, Skalej M, Bitzer M, Grote EH (1997) ICP monitoring with a re-usable transducer: Experimental and clinical evaluation of the Gaeltec ICT/b pressure probe. Acta Neurochir (Wien) 139:569–573

    Article  CAS  Google Scholar 

  14. Gaab MR, Heissler HE, Ehrhardt K (1989) Physical characteristics of various methods for measuring ICP. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin Heidelberg New York, pp 16–21

    Chapter  Google Scholar 

  15. Raabe A, Totzauer R, Meyer O, Stockel R, Hohrein D, Schoeche J (1998) Reliability of extradural pressure measurement in clinical practice: behaviour of three modern sensors during simultaneous ipsilateral intraventricular or intraparenchymal pressure measurement. Neurosurgery 43:306–311

    Article  CAS  PubMed  Google Scholar 

  16. Czosnyka M, Czosnyka Z, Pickard JD (1997) Laboratory testing of the Spiegelberg brain pressure monitor: a technical report. J Neurol Neurosurg Psychiatry 63:732–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grände PO, Asgiersson B, Nordström CH (1997) Physiological principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain. J Trauma 42(Suppl):S23–S31

    Article  PubMed  Google Scholar 

  18. Eker C, Asgeirsson B, Grande PO, Schalen W, Nordstrom CH (1998) Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med 26:1881–1886

    Article  CAS  PubMed  Google Scholar 

  19. Czosnyka M, Guazzo E, Whitehouse H, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD (1996) Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien) 138:531–541

    Article  CAS  Google Scholar 

  20. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD (2004) Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien) 146:131–141

    Article  CAS  Google Scholar 

  21. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–19

    Article  CAS  PubMed  Google Scholar 

  22. Lang E W, Lagopoulos J, Griffith J, Yip K, Yam A, Mudaliar Y, Mehdorn HM, Dorsch NW (2003) Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J Neurolog Neurosurg Psychiatry 74:1053–1059

    Article  CAS  Google Scholar 

  23. McKeating EG, Andrews PJ, Tocher JI, Menon DK (1998) The intensive care of severe head injury: a survey of non-neurosurgical centres in the United Kingdom. Br J Neurosurg 12:7–14

    Article  CAS  PubMed  Google Scholar 

  24. Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD (1998) Cerebral perfusion pressure in head injured patients: a non invasive assessment using transcranial Doppler ultrasonography. J Neurosurg 88:802–808

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt B, Czosnyka M, Schwarze JJ, Sander D, Gerstner W, Lumenta CB, Pickard JD, Klingelhofer J (1999) Cerebral vasodilatation causing acute intracranial hypertension: a method for non-invasive assessment. J Cereb Blood Flow Metab 19:990–996

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt B, Czosnyka M, Schwarze JJ, Sander D, Gerstner W, Lumenta CB, Klingelhofer J (2000) Evaluation of a method for non-invasive intracranial pressure assessment during infusion studies in patients with hydrocephalus. J Neurosurg 92:793–800

    Article  CAS  PubMed  Google Scholar 

  27. Dahl A, Russell D, Nyberg-Hansen R, Rootwelt K (1992) A comparison of regional cerebral blood flow and middle cerebral artery blood flow velocities: simultaneous measurements in healthy subjects. J Cereb Blood Flow Metab 12:1049–1054

    Article  CAS  PubMed  Google Scholar 

  28. Smielewski P, Czosnyka M, Iyer V, Piechneik S, Whitehouse H, Pickard JD (1995) Computerised transient hyperaemic response test—a method for assessing autoregulation. Ultrasound Med Biol 21:599–611

    Article  CAS  PubMed  Google Scholar 

  29. Lam JM, Smielweski P, Czosnyka M, Pickard JD, Kirkpatrick PJ (2000) Predicting delayed ischaemic deficits after aneurysmal subarachnoid haemorrhage using a transient hyperaemic response test of cerebral autoregulation. Neurosurgery 47:819–825

    Article  CAS  PubMed  Google Scholar 

  30. Lang EW, Diehl RR, Mehdorn HM (2001) Cerebral autoregulation testing after aneurysmal subarachnoid haemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med 29:158–163

    Article  CAS  PubMed  Google Scholar 

  31. Jarus-Dziedzic K, Bogucki J, Zub W (2001) The influence of ruptured cerebral aneurysm localization on the blood flow velocity evaluated by transcranial Doppler ultrasonography. Neurol Res 23:23–28

    Article  CAS  PubMed  Google Scholar 

  32. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1988) Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir (Wein) 42:81–84

    CAS  Google Scholar 

  33. Minhas PS, Menon DK, Smielewski P, Czosnyka M, Kirkpatrick PJ, Clark JC, Pickard JD (2003) Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid haemorrhage. Neurosurgery 52:1017–1024

    PubMed  Google Scholar 

  34. Horn P, Vajkoczy P, Bauhuf C, Munch E, Poeckler-Schoeniger C, Schmiedek P (2001) Quantitative regional cerebral blood flow techniques improve non-invasive detection of cerebrovascular vasospasm after aneurysmal subarachnoid haemorrhage. Cerebrovasc Dis 12:197–202

    Article  CAS  PubMed  Google Scholar 

  35. Ratsep T, Asser T (2001) Cerebral haemodynamic impairment after aneurysmal subarachnoid hemorrhage as evaluated using transcranial Doppler ultrasonography: relationship to delayed cerebral ischemia and clinical outcome. J Neurosurg 95:393–401

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, Pickard JD (2001) Preliminary experience of the estimation of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurolog Neurosurg Psychiatry 70:198–204

    Article  CAS  Google Scholar 

  37. Buhre W, Heinzel FR, Grund S, Sonntag H, Weyland A (2003) Extrapolation to zero-flow pressure in cerebral arteries to estimate intracranial pressure. Br J Anaesth 90:291–295

    Article  CAS  PubMed  Google Scholar 

  38. Thees C, Scholz M, Schaller C, Gass A, Pavlidis C, Weyland A (2002) Relationship between intracranial pressure and critical closing pressure in patients with neurotrauma. Anesthesiology 96:595–599

    Article  PubMed  Google Scholar 

  39. Hadani M, Bruk B, Ram Z, Knoller N, Spiegelmann R, Segal E (1999) Application of transcranial Doppler ultrasonography for the diagnosis of brain death. Intensive Care Med 25:822–828

    Article  CAS  PubMed  Google Scholar 

  40. Lampl Y, Gilad R, Eschel Y, Boaz M, Rapoport A, Sadeh M (2002) Diagnosing brain death using the transcranial Doppler with a transorbital approach. Arch Neurol 59:58–60

    Article  PubMed  Google Scholar 

  41. Klotzsch C, Popescu O, Berlit P (1998) A new 1 MHz probe for transcranial Doppler sonography in patients with inadequate temporal bone windows. Ultrasound Med Biol 24:101–103

    Article  CAS  PubMed  Google Scholar 

  42. Bolognese P, Miller JI, Heger IM, Milhorat TH (1993) Laser Doppler flowmetry in neurosurgery. J Neurosurg Anesthesiol 5:151–158

    Article  CAS  PubMed  Google Scholar 

  43. Lam JM, Hsiang JN, Poon WS (1997) Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg 86:438–445

    Article  CAS  PubMed  Google Scholar 

  44. Kirkpatrick PJ, Smielweski P, Piechnik S, Pickard JD, Czosnyka M (1996) Early effects of mannitol in patients with head injuries assessed using bedside multimodality monitoring. Neurosurgery 39:714–720

    Article  CAS  PubMed  Google Scholar 

  45. Kirkpatrick PJ, Smielweski P, Czosnyka M, Pickard JD (1994) Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury. J Neurolog Neurosurg Psychiatry 57:1382–1388

    Article  CAS  Google Scholar 

  46. Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27:171–178

    Article  PubMed  Google Scholar 

  47. Carter LP (1991) Surface monitoring of cerebral cortical blood flow. Cerebrovasc Brain Metab Rev 3:246–261

    CAS  PubMed  Google Scholar 

  48. Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P (2000) Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a normal thermal diffusion microprobe. J Neurosurg 93:265–274

    Article  CAS  PubMed  Google Scholar 

  49. Carter LP, Weinand ME, Oommen KJ (1993) Cerebral blod flow (CBF) monitoring in intensive care by thermal diffusion. Acta Neurochir Suppl (Wien) 59:43–46

    CAS  Google Scholar 

  50. Choksey MS, Chambers IR, Jenkins A, Mendelow AD, Sengupta RP (1993) Cortical thermal clearance monitoring in surgery for giant middle cerebral artery aneurysm. Br J Neurosurg 7:673–676

    Article  CAS  PubMed  Google Scholar 

  51. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P (2003) Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 98:1227–1234

    Article  PubMed  Google Scholar 

  52. Vajkoczy P, Horn P, Bauhuf C, Munch E, Hubner U, Thome C (2001) Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm. Stroke 32:498–505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Gupta.

Additional information

Part II of this article is available at: http://dx.doi.org/10.1007/s00134-007-0660-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, A., Gupta, A.K. Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring. Intensive Care Med 33, 1263–1271 (2007). https://doi.org/10.1007/s00134-007-0678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-007-0678-z

Keywords

Navigation