Skip to main content

Advertisement

Log in

Bewegungsanalysesysteme in der Forschung und für niedergelassene Orthopädinnen und Orthopäden

Motion analysis systems in research and for practicing orthopedists

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Komplexe biomechanische Bewegungsanalysen können für eine Vielzahl orthopädischer Fragestellungen wichtige Informationen liefern. Bei der Beschaffung von Bewegungsanalysesystemen sind neben den klassischen Messgütekriterien (Validität, Reliabilität, Objektivität) auch räumliche und zeitliche Rahmenbedingungen sowie Anforderungen an die Qualifikation des Messpersonals zu berücksichtigen.

Anwendung

In der komplexen Bewegungsanalyse werden Systeme zur Bestimmung der Kinematik, der Kinetik und der Muskelaktivität (Elektromyographie) eingesetzt. Der vorliegende Artikel gibt einen Überblick über Methoden der komplexen biomechanischen Bewegungsanalyse für den Einsatz in der orthopädischen Forschung oder in der individuellen Patientenversorgung. Neben dem Einsatz zur reinen Bewegungsanalyse wird auch der Einsatz von Bewegungsanalyseverfahren im Bereich des Biofeedbacktrainings diskutiert.

Beschaffung

Für die konkrete Anschaffung von Bewegungsanalysesystemen empfiehlt sich die Kontaktaufnahme mit Fachgesellschaften (z. B. Deutsche Gesellschaft für Biomechanik), Hochschulen und Universitäten mit vorhandenen Bewegungsanalyseeinrichtungen oder Vertriebsfirmen im Bereich der Biomechanik.

Abstract

Background

Complex biomechanical motion analysis can provide relevant information for a variety of orthopedic problems. When purchasing motion analysis systems, in addition to the classical measurement quality criteria (validity, reliability, objectivity), spatial and temporal conditions, as well as the requirements for the qualification of the measuring personnel should be considered.

Application

In complex movement analysis, systems are used to determine kinematics, kinetics and muscle activity (electromyography). This article gives an overview of methods of complex biomechanical motion analysis for use in orthopaedic research or for individual patient care. In addition to the use for pure movement analysis, the use of movement analysis methods in the field of biofeedback training is discussed.

Acquisition

For the specific acquisition of motion analysis systems, it is recommended to contact professional societies (e.g., the German Society for Biomechanics),universities with existing motion analysis facilities or distributors in the field of biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

AR:

Augmented Reality

EMG :

Elektromyographie

IMU :

Inertial Measurement Unit

VR :

Virtual Reality

Literatur

  1. Agresta C, Brown A (2015) Gait retraining for injured and healthy runners using augmented feedback: a systematic literature review. J Orthop Sports Phys Ther 45:576–584. https://doi.org/10.2519/jospt.2015.5823

    Article  PubMed  Google Scholar 

  2. Andriacchi TP, Mündermann A, Smith RL et al (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32:447–457. https://doi.org/10.1023/B:ABME.0000017541.82498.37

    Article  PubMed  Google Scholar 

  3. Bobbert MF, Schamhardt HC (1990) Accuracy of determining the point of force application with piezoelectric force plates. J Biomech 23:705–710. https://doi.org/10.1016/0021-9290(90)90169-4

    Article  CAS  PubMed  Google Scholar 

  4. Cappozzo A (2018) Observing and revealing the hidden structure of the human form in motion throughout the centuries. In: Handbook of human motion. Springer, Cham, S 3–15

    Chapter  Google Scholar 

  5. Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry: part 1: theoretical background. Gait Posture 21:186–196. https://doi.org/10.1016/j.gaitpost.2004.01.010

    Article  PubMed  Google Scholar 

  6. Della Croce U, Leardini A, Chiari L, Cappozzo A (2005) Human movement analysis using stereophotogrammetry: Part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21:226–237. https://doi.org/10.1016/j.gaitpost.2004.05.003

    Article  PubMed  Google Scholar 

  7. Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10:60. https://doi.org/10.1186/1743-0003-10-60

    Article  PubMed  PubMed Central  Google Scholar 

  8. Godfrey A, Conway R, Meagher D, ÓLaighin G (2008) Direct measurement of human movement by accelerometry. Med Eng Phys 30:1364–1386. https://doi.org/10.1016/j.medengphy.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  9. Gumaa M, Rehan Youssef A (2019) Is virtual reality effective in orthopedic rehabilitation? A systematic review and meta-analysis. Phys Ther 99:1304–1325. https://doi.org/10.1093/ptj/pzz093

    Article  PubMed  Google Scholar 

  10. Higginson BK (2009) Methods of running gait analysis. Curr Sports Med Rep 8:136. https://doi.org/10.1249/JSR.0b013e3181a6187a

    Article  PubMed  Google Scholar 

  11. Kessler SE, Rainbow MJ, Lichtwark GA et al (2019) A direct comparison of Biplanar videoradiography and optical motion capture for foot and ankle kinematics. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00199

  12. Kobsar D, Charlton JM, Tse CTF et al (2020) Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. J Neuroeng Rehabil 17:62. https://doi.org/10.1186/s12984-020-00685-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leardini A, Chiari L, Croce UD, Cappozzo A (2005) Human movement analysis using stereophotogrammetry: Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225. https://doi.org/10.1016/j.gaitpost.2004.05.002

    Article  PubMed  Google Scholar 

  14. Merletti R, Parker PJ (2004) Electromyography: physiology, engineering, and non-invasive applications. John Wiley & Sons

    Book  Google Scholar 

  15. Miranda DL, Rainbow MJ, Crisco JJ, Fleming BC (2013) Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver. J Biomech 46:567–573. https://doi.org/10.1016/j.jbiomech.2012.09.023

    Article  PubMed  Google Scholar 

  16. Miranda DL, Schwartz JB, Loomis AC et al (2011) Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J Biomech Eng. https://doi.org/10.1115/1.4005471

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mohseni Bandpei MA, Rahmani N, Majdoleslam B et al (2014) Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review. J Manipulative Physiol Ther 37:510–521. https://doi.org/10.1016/j.jmpt.2014.05.006

    Article  PubMed  Google Scholar 

  18. de la Ortiz HAB, Matamala AM, Inostroza FL et al (2022) Efficacy of biofeedback in rehabilitation of musculoskeletal disorders: a systematic review. Adv Rehabil 36:41–69. https://doi.org/10.5114/areh.2022.113241

    Article  Google Scholar 

  19. Pfeifer K, Vogt L (2004) Elektromyographie (EMG). In: Banzer W, Pfeifer K, Vogt L (Hrsg) Funktionsdiagnostik des Bewegungssystems in der Sportmedizin. Springer, Berlin, Heidelberg, S 165–182

    Chapter  Google Scholar 

  20. Poitras I, Dupuis F, Bielmann M et al (2019) Validity and reliability of wearable sensors for joint angle estimation: a systematic review. Sensors 19:1555. https://doi.org/10.3390/s19071555

    Article  PubMed  PubMed Central  Google Scholar 

  21. Richards R, van den Noort JC, Dekker J, Harlaar J (2017) Gait retraining with real-time biofeedback to reduce knee adduction moment: systematic review of effects and methods used. Arch Phys Med Rehabil 98:137–150. https://doi.org/10.1016/j.apmr.2016.07.006

    Article  PubMed  Google Scholar 

  22. Robles-García V, Corral-Bergantiños Y, Espinosa N et al (2015) Spatiotemporal gait patterns during overt and covert evaluation in patients with parkinson’s disease and healthy subjects: is there a hawthorne effect? J Appl Biomech 31:189–194. https://doi.org/10.1123/jab.2013-0319

    Article  PubMed  Google Scholar 

  23. Toledo-Peral CL, Vega-Martínez G, Mercado-Gutiérrez JA et al (2022) Virtual/augmented reality for rehabilitation applications using electromyography as control/biofeedback: systematic literature review. Electronics 11:2271. https://doi.org/10.3390/electronics11142271

    Article  Google Scholar 

  24. Uchida TK, Delp SL (2021) Biomechanics of movement: the science of sports, robotics, and rehabilitation

    Google Scholar 

  25. Uhlrich SD, Falisse A, Kidziński Ł et al (2022) OpenCap: 3D human movement dynamics from smartphone videos https://doi.org/10.1101/2022.07.07.499061

    Book  Google Scholar 

  26. Wade L, Needham L, McGuigan P, Bilzon J (2022) Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 10:e12995. https://doi.org/10.7717/peerj.12995

    Article  PubMed  PubMed Central  Google Scholar 

  27. Whittle MW (1996) Clinical gait analysis: a review. Hum Mov Sci 15:369–387. https://doi.org/10.1016/0167-9457(96)00006-1

    Article  Google Scholar 

  28. Willwacher S, Korn O (2021) Gamification of movement exercises in rehabilitation and prevention: a framework for smart training in AI-based Exergames. In: Shin CS, Di Bucchianico G, Fukuda S, al (Hrsg) Advances in industrial design. Springer, Cham, S 855–862

    Chapter  Google Scholar 

  29. Zatsiorsky VM (2012) Biomechanics of skeletal muscles. Human Kinetics, S 170

  30. Zeng Z, Liu Y, Hu X et al (2022) Validity and reliability of inertial measurement units on lower extremity kinematics during running: a systematic review and meta-analysis. Sports Med Open 8:86. https://doi.org/10.1186/s40798-022-00477-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Basmajian JV (1979) Biofeedback: Principles and practice for clinicians. Williams & Wilkins

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Willwacher.

Ethics declarations

Interessenkonflikt

S. Willwacher, J. Robbin, T. Eßer und P. Mai geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willwacher, S., Robbin, J., Eßer, T. et al. Bewegungsanalysesysteme in der Forschung und für niedergelassene Orthopädinnen und Orthopäden. Orthopädie 52, 610–617 (2023). https://doi.org/10.1007/s00132-023-04404-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04404-3

Schlüsselwörter

Keywords

Navigation