Skip to main content
Log in

Tribologie in der Hüftendoprothetik

Welches Material hat welchen Nutzen?

Tribology in hip arthroplasty

Benefits of different materials

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die Wahl der Materialkombination beim künstlichen Hüftgelenkersatz ist von klinischer Relevanz. Der vorliegende Übersichtsartikel betrachtet die technischen Unterschiede hinsichtlich des Verschleißes und der Korrosion der relevanten Materialkombinationen aus Keramik, Metall, keramisiertem Metall und verschiedenen Polyethylenarten. Die Materialeigenschaften, die häufig unter standardisierten Bedingungen im Labor erfasst wurden, werden mit den klinischen Ergebnissen anhand evidenzgraduierter klinischer Studien und auf Basis von Registerstudien verglichen. Diese Arbeit stellt somit als aktuelle Momentaufnahme Erwartungen und tatsächliche klinische Ergebnisse heutiger Materialkombinationen in einen gemeinsamen Kontext. Es zeigt sich, dass sich manche Tendenzen aus der Materialforschung, z. B. zum quervernetzten Polyethylen, mit den Beobachtungen aus der Klinik decken, während bei anderen Materialien technische Vorteile bislang nicht in einen relevanten klinischen Nutzen münden.

Abstract

When it comes to total hip replacements, choosing the suitable material combination is of clinical relevance. The present review article examines the technical differences in wear and corrosion of the relevant material combinations of ceramics, metals, ceramized metals and various types of polyethylene. The material characteristics, which were often tested under standardized conditions in the laboratory, are compared with clinical results on the basis of evidence-graded clinical studies and on the basis of register studies. This article thus represents an up-to-date snapshot of the expectations and actual clinical outcomes of the present choice of material combinations. It shows that some tendencies from the field of materials research, e.g. with regard to cross-linked polyethylene, coincide with observations from practical clinical experience, while for other materials, a proven technical superiority has not yet been confirmed as an evident advantage in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Abbreviations

ALTR:

„Adverse local tissue reactions“

AOANJRR :

Australian Orthopaedic Association National Joint Replacement Registry

AOXPE :

Antioxidatives quervernetztes Polyethylen

ARR :

Absolute Risikoreduktion

EPRD :

Endoprothesenregister Deutschland

KPE :

Konventionelles Polyethylen

NJR :

National Joint Registry

NNT :

Anzahl der notwendigen Behandlungen

RCT :

Randomisierte kontrollierte Studie

XPE :

Quervernetztes Polyethylen

Literatur

  1. AOANJRR (2020) Australian Orthopaedic Association National Joint Replacement Registry, hip, knee & shoulder arthroplasty—Annual report 2020. AOANJRR, Adelaide

    Google Scholar 

  2. Barlow BT, Ortiz PA, Boles JW et al (2017) What are normal metal Ion levels after total hip arthroplasty? A serologic analysis of four bearing surfaces. J Arthroplasty 32:1535–1542. https://doi.org/10.1016/j.arth.2016.11.024

    Article  PubMed  Google Scholar 

  3. Basques BA, Bell JA, Fillingham YA et al (2019) Gender differences for hip and knee arthroplasty: complications and healthcare utilization. J Arthroplasty 34:1593–1597. https://doi.org/10.1016/j.arth.2019.03.064

    Article  PubMed  Google Scholar 

  4. Bergmann G, Bender A, Dymke J et al (2016) Standardized loads acting in hip implants. PLoS ONE 11:e155612. https://doi.org/10.1371/journal.pone.0155612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bragdon CR, Doerner M, Martell J et al (2013) The 2012 John Charnley Award: Clinical multicenter studies of the wear performance of highly crosslinked remelted polyethylene in THA. Clin Orthop Relat Res 471:393–402. https://doi.org/10.1007/s11999-012-2604-0

    Article  PubMed  Google Scholar 

  6. Bryan AJ, Calkins TE, Karas V et al (2019) Primary total hip arthroplasty in patients less than 50 years of age at a mean of 16 years: highly crosslinked polyethylene significantly reduces the risk of revision. J Arthroplasty 34:S238–S241. https://doi.org/10.1016/j.arth.2019.02.025

    Article  PubMed  Google Scholar 

  7. Busch A, Jäger M, Wegner A et al (2019) Vitamin E-blended versus conventional polyethylene liners in prostheses: prospective, randomized trial with 3‑year follow-up. Orthopäde. https://doi.org/10.1007/s00132-019-03830-6

    Article  Google Scholar 

  8. Cafri G, Paxton EW, Love R et al (2017) Is there a difference in revision risk between metal and ceramic heads on highly crosslinked polyethylene liners? Clin Orthop Relat Res 475:1349–1355. https://doi.org/10.1007/s11999-016-4966-1

    Article  PubMed  Google Scholar 

  9. Capello WN, D’Antonio JA, Ramakrishnan R et al (2011) Continued improved wear with an annealed highly cross-linked polyethylene. Clin Orthop Relat Res 469:825–830. https://doi.org/10.1007/s11999-010-1556-5

    Article  PubMed  Google Scholar 

  10. Carli AV, Patel AR, Cross MB et al (2020) Long-term performance of oxidized zirconium on conventional and highly cross-linked polyethylene in total hip arthroplasty. SICOT J 6:1–10. https://doi.org/10.1051/sicotj/2020010

    Article  Google Scholar 

  11. Cartner J, Aldinger P, Li C et al (2017) Characterization of femoral head taper corrosion features using a 22-year retrieval database. HSS J 13:35–41. https://doi.org/10.1007/s11420-016-9517-5

    Article  PubMed  Google Scholar 

  12. Cooper HJ, Della Valle CJ, Berger RA et al (2012) Corrosion at the head-neck taper as a cause for adverse local tissue reactions after total hip arthroplasty. J Bone Joint Surg Am 94:1655–1661. https://doi.org/10.2106/JBJS.K.01352

    Article  PubMed  Google Scholar 

  13. Dahl J, Söderlund P, Nivbrant B et al (2012) Less wear with aluminium-oxide heads than cobalt-chrome heads with ultra high molecular weight cemented polyethylene cups: a ten-year follow-up with radiostereometry. Int Orthop 36:485–490. https://doi.org/10.1007/s00264-011-1334-3

    Article  PubMed  Google Scholar 

  14. de Steiger R, Lorimer M, Graves SE (2018) Cross-linked polyethylene for total hip Arthroplasty markedly reduces revision surgery at 16 years. J Bone Joint Surg Am 100:1281–1288. https://doi.org/10.2106/jbjs.17.01221

    Article  PubMed  Google Scholar 

  15. Di Laura A, Hothi H, Henckel J et al (2017) Retrieval analysis of metal and ceramic femoral heads on a single CoCr stem design. Bone Joint Res 6:345–350. https://doi.org/10.1302/2046-3758.65.bjr-2016-0325.r1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dong Y‑L, Li T, Xiao K et al (2015) Ceramic on ceramic or ceramic-on-polyethylene for total hip arthroplasty: a systemic review and meta-analysis of prospective randomized studies. Chin Med J (Engl) 128:1223–1231. https://doi.org/10.4103/0366-6999.156136

    Article  Google Scholar 

  17. EPRD (2019) Endoprothesenregister Deutschland – Jahresbericht 2018. EPRD, Berlin

    Google Scholar 

  18. EPRD (2020) Endoprothesenregister Deutschland – Jahresbericht 2019. EPRD, Berlin

    Google Scholar 

  19. Garvin KL, White TC, Dusad A et al (2015) Low wear rates seen in THAs with highly crosslinked polyethylene at 9 to 14 years in patients younger than age 50 years. Clin Orthop Relat Res 473:3829–3835. https://doi.org/10.1007/s11999-015-4422-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gilbert JL, Buckley CA, Jacobs JJ (1993) In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J Biomed Mater Res 27:1533–1544. https://doi.org/10.1002/jbm.820271210

    Article  CAS  PubMed  Google Scholar 

  21. Glyn-Jones S, Thomas GE, Garfjeld-Roberts P et al (2015) The John Charnley Award: Highly crosslinked polyethylene in total hip arthroplasty decreases long-term wear: a double-blind randomized trial. Clin Orthop Relat Res 473:432–438. https://doi.org/10.1007/s11999-014-3735-2

    Article  PubMed  Google Scholar 

  22. Good V, Widding K, Hunter G et al (2005) Oxidized zirconium: a potentially longer lasting hip implant. Mater Des 26:618–622. https://doi.org/10.1016/j.matdes.2004.08.014

    Article  CAS  Google Scholar 

  23. Grupp TM, Holderied M, Mulliez MA et al (2014) Biotribology of a vitamin E‑stabilized polyethylene for hip arthroplasty—Influence of artificial ageing and third-body particles on wear. Acta Biomater 10:3068–3078. https://doi.org/10.1016/j.actbio.2014.02.052

    Article  CAS  PubMed  Google Scholar 

  24. Hadley M, Hardaker C, Isaac G et al (2018) Wear of different materials for total hip replacement under adverse stop-dwell-start in vitro wear simulation conditions. Proc Inst Mech Eng H 232:1261–1270. https://doi.org/10.1177/0954411918813385

    Article  PubMed  Google Scholar 

  25. Hallab NJ, Messina C, Skipor A et al (2004) Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements. J Orthop Res 22:250–259. https://doi.org/10.1016/s0736-0266(03)00186-4

    Article  CAS  PubMed  Google Scholar 

  26. Hampton C, Weitzler L, Baral E et al (2019) Do oxidized zirconium heads decrease tribocorrosion in total hip arthroplasty? A study of retrieved components. Bone Joint J 101-b:386–389. https://doi.org/10.1302/0301-620x.101b4.bjj-2018-1316.r1

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi Y, Seki T, Morita D et al (2019) Comparison of wear rate between ceramic-on-ceramic, metal on highly cross-linked polyethylene, and metal-on-metal bearings. Rev Bras Ortop 54:295–302. https://doi.org/10.1055/s-0039-1691762

    Article  Google Scholar 

  28. Huddleston JI, Wang Y, Uquillas C et al (2012) Age and obesity are risk factors for adverse events after total hip arthroplasty. Clin Orthop Relat Res 470:490–496. https://doi.org/10.1007/s11999-011-1967-y

    Article  PubMed  Google Scholar 

  29. Hussey DK, McGrory BJ (2017) Ten-year cross-sectional study of mechanically assisted crevice corrosion in 1352 consecutive patients with metal-on-polyethylene total hip arthroplasty. J Arthroplasty 32:2546–2551. https://doi.org/10.1016/j.arth.2017.03.020

    Article  PubMed  Google Scholar 

  30. Jolbäck P, Rolfson O, Cnudde P et al (2019) High annual surgeon volume reduces the risk of adverse events following primary total hip arthroplasty: a registry-based study of 12,100 cases in Western Sweden. Acta Orthop 90:153–158. https://doi.org/10.1080/17453674.2018.1554418

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jonsson BA, Kadar T, Havelin LI et al (2015) Oxinium modular femoral heads do not reduce polyethylene wear in cemented total hip arthroplasty at five years: a randomised trial of 120 hips using radiostereometric analysis. Bone Joint J 97:1463–1469. https://doi.org/10.1302/0301-620x.97b11.36137

    Article  PubMed  Google Scholar 

  32. Kadar T, Hallan G, Aamodt A et al (2011) Wear and migration of highly cross-linked and conventional cemented polyethylene cups with cobalt chrome or Oxinium femoral heads: a randomized radiostereometric study of 150 patients. J Orthop Res 29:1222–1229. https://doi.org/10.1002/jor.21389

    Article  CAS  PubMed  Google Scholar 

  33. Kelly NH, Rajadhyaksha AD, Wright TM et al (2010) High stress conditions do not increase wear of thin highly crosslinked UHMWPE. Clin Orthop Relat Res 468:418–423. https://doi.org/10.1007/s11999-009-1154-6

    Article  PubMed  Google Scholar 

  34. Khoshbin A, Wu J, Ward S et al (2020) Wear rates of XLPE nearly 50 % lower than previously thought after adjusting for initial creep: an RCT comparing 4 bearing combinations. JBJS Open Access 5:e66. https://doi.org/10.2106/jbjs.oa.19.00066

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kinkel S, Wollmerstedt N, Kleinhans J et al (2009) Patient activity after total hip arthroplasty declines with advancing age. Clin Orthop Relat Res 467:2053–2058. https://doi.org/10.1007/s11999-009-0756-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kocagoz SB, Underwood RJ, MacDonald DW et al (2016) Ceramic heads decrease metal release caused by head-taper fretting and corrosion. Clin Orthop Relat Res 474:985–994. https://doi.org/10.1007/s11999-015-4683-1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kurtz SM, Kocagoz SB, Hanzlik JA et al (2013) Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin Orthop Relat Res 471:3270–3282. https://doi.org/10.1007/s11999-013-3096-2

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kurtz SM, Medel FJ, MacDonald DW et al (2010) Reasons for revision of first-generation highly cross-linked polyethylenes. J Arthroplasty 25:67–74. https://doi.org/10.1016/j.arth.2010.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kuzyk PR, Saccone M, Sprague S et al (2011) Cross-linked versus conventional polyethylene for total hip replacement: a meta-analysis of randomised controlled trials. J Bone Joint Surg Br 93:593–600. https://doi.org/10.1302/0301-620x.93b5.25908

    Article  CAS  PubMed  Google Scholar 

  40. Lee TH, Moon YW, Lim SJ et al (2014) Meta-analysis of the incidence and risk factors for squeaking after primary ceramic-on-ceramic total hip arthroplasty in Asian patients. Hip Pelvis 26:92–98. https://doi.org/10.5371/hp.2014.26.2.92

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lo CWT, Tsang WWN, Yan CH et al (2019) Risk factors for falls in patients with total hip arthroplasty and total knee arthroplasty: a systematic review and meta-analysis. Osteoarthr Cartil 27:979–993. https://doi.org/10.1016/j.joca.2019.04.006

    Article  CAS  Google Scholar 

  42. López-López JA, Humphriss RL, Beswick AD et al (2017) Choice of implant combinations in total hip replacement: systematic review and network meta-analysis. BMJ 359:j4651. https://doi.org/10.1136/bmj.j4651

    Article  PubMed  PubMed Central  Google Scholar 

  43. Madanat R, Laaksonen I, Graves SE et al (2018) Ceramic bearings for total hip arthroplasty are associated with a reduced risk of revision for infection. Hip Int 28:222–226. https://doi.org/10.1177/1120700018776464

    Article  PubMed  Google Scholar 

  44. Malik AT, Jain N, Scharschmidt TJ et al (2018) Does surgeon volume affect outcomes following primary total hip arthroplasty? A systematic review. J Arthroplasty 33:3329–3342. https://doi.org/10.1016/j.arth.2018.05.040

    Article  PubMed  Google Scholar 

  45. Merola M, Affatato S (2019) Materials for hip prostheses: a review of wear and loading considerations. Materials (Basel) 12:495. https://doi.org/10.3390/ma12030495

    Article  CAS  PubMed Central  Google Scholar 

  46. Morison ZA, Patil S, Khan HA et al (2014) A randomized controlled trial comparing oxinium and cobalt-chrome on standard and cross-linked polyethylene. J Arthroplasty 29:164–168. https://doi.org/10.1016/j.arth.2014.04.046

    Article  PubMed  Google Scholar 

  47. Mufarrih SH, Ghani MOA, Martins RS et al (2019) Effect of hospital volume on outcomes of total hip arthroplasty: a systematic review and meta-analysis. J Orthop Surg Res 14:468. https://doi.org/10.1186/s13018-019-1531-0

    Article  PubMed  PubMed Central  Google Scholar 

  48. Muratoglu OK, Bragdon CR, O’Connor DO et al (2001) A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties: recipient of the 1999 HAP Paul Award. J Arthroplasty 16:149–160. https://doi.org/10.1054/arth.2001.20540

    Article  CAS  PubMed  Google Scholar 

  49. NJR (2020) National Joint Registry—17th annual report 2020. NJR, Hertfordshire

    Google Scholar 

  50. Nodzo SR, Esposito CI, Potter HG et al (2017) MRI, retrieval analysis, and histologic evaluation of adverse local tissue reaction in metal-on-polyethylene total hip arthroplasty. J Arthroplasty 32:1647–1653. https://doi.org/10.1016/j.arth.2016.11.046

    Article  PubMed  Google Scholar 

  51. Ong KL, Richards JA, Lau EC et al (2020) Corrosion concerns? Trends in metal-on-polyethylene total hip arthroplasty revision rates and comparisons against ceramic-on-polyethylene up to 10 years of follow-up. J Arthroplasty 35:2919–2925. https://doi.org/10.1016/j.arth.2020.05.007

    Article  PubMed  Google Scholar 

  52. Panagiotidou A, Meswania J, Osman K et al (2015) The effect of frictional torque and bending moment on corrosion at the taper interface: an in vitro study. Bone Joint J 97-B:463–472. https://doi.org/10.1302/0301-620x.97b4.34800

    Article  CAS  PubMed  Google Scholar 

  53. Pang HN, Naudie DD, McCalden RW et al (2015) Highly crosslinked polyethylene improves wear but not surface damage in retrieved acetabular liners. Clin Orthop Relat Res 473:463–468. https://doi.org/10.1007/s11999-014-3858-5

    Article  PubMed  Google Scholar 

  54. Peters RM, Van Steenbergen LN, Stevens M et al (2018) The effect of bearing type on the outcome of total hip arthroplasty. Acta Orthop 89:163–169. https://doi.org/10.1080/17453674.2017.1405669

    Article  PubMed  Google Scholar 

  55. Podmore B, Hutchings A, van der Meulen J et al (2018) Impact of comorbid conditions on outcomes of hip and knee replacement surgery: a systematic review and meta-analysis. BMJ Open 8:e21784. https://doi.org/10.1136/bmjopen-2018-021784

    Article  PubMed  PubMed Central  Google Scholar 

  56. Purdue PE, Koulouvaris P, Nestor BJ et al (2006) The central role of wear debris in periprosthetic osteolysis. HSS J 2:102–113. https://doi.org/10.1007/s11420-006-9003-6

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rosinsky PJ, Chen JW, Lall AC et al (2020) Can we help patients forget their joint? Determining a threshold for successful outcome for the forgotten joint score. J Arthroplasty 35:153–159. https://doi.org/10.1016/j.arth.2019.08.014

    Article  PubMed  Google Scholar 

  58. Sayed-Noor AS, Mukka S, Mohaddes M et al (2019) Body mass index is associated with risk of reoperation and revision after primary total hip arthroplasty: a study of the Swedish Hip Arthroplasty Register including 83,146 patients. Acta Orthop 90:220–225. https://doi.org/10.1080/17453674.2019.1594015

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shen C, Tang ZH, Hu JZ et al (2014) Does cross-linked polyethylene decrease the revision rate of total hip arthroplasty compared with conventional polyethylene? A meta-analysis. Orthop Traumatol Surg Res 100:745–750. https://doi.org/10.1016/j.otsr.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  60. Shen FW, Lu Z, McKellop HA (2011) Wear versus thickness and other features of 5‑Mrad crosslinked UHMWPE acetabular liners. Clin Orthop Relat Res 469:395–404. https://doi.org/10.1007/s11999-010-1555-6

    Article  PubMed  Google Scholar 

  61. Shi J, Zhu W, Liang S et al (2019) Cross-linked versus conventional polyethylene for long-term clinical outcomes after total hip arthroplasty: a systematic review and meta-analysis. J Invest Surg. https://doi.org/10.1080/08941939.2019.1606370

    Article  PubMed  Google Scholar 

  62. Stausberg J, Maier B, Bestehorn K et al (2020) Memorandum Register für die Versorgungsforschung: Update 2019. Gesundheitswesen 82:e39–e66. https://doi.org/10.1055/a-1083-6417

    Article  PubMed  Google Scholar 

  63. Tan SC, Lau AC, Del Balso C et al (2016) Tribocorrosion: ceramic and oxidized zirconium vs cobalt-chromium heads in total hip arthroplasty. J Arthroplasty 31:2064–2071. https://doi.org/10.1016/j.arth.2016.02.027

    Article  PubMed  Google Scholar 

  64. Traina F, De Fine M, Di Martino A et al (2013) Fracture of ceramic bearing surfaces following total hip replacement: a systematic review. Biomed Res Int 2013:157247. https://doi.org/10.1155/2013/157247

    Article  PubMed  PubMed Central  Google Scholar 

  65. Urish KL, Giori NJ, Lemons JE et al (2019) Trunnion corrosion in total hip arthroplasty-basic concepts. Orthop Clin North Am 50:281–288. https://doi.org/10.1016/j.ocl.2019.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  66. Varnum C, Pedersen AB, Kjærsgaard-Andersen P et al (2015) Comparison of the risk of revision in cementless total hip arthroplasty with ceramic-on-ceramic and metal-on-polyethylene bearings. Acta Orthop 86:477–484. https://doi.org/10.3109/17453674.2015.1012975

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang S, Zhang S, Zhao Y (2013) A comparison of polyethylene wear between cobalt-chrome ball heads and alumina ball heads after total hip arthroplasty: a 10-year follow-up. J Orthop Surg Res 8:20. https://doi.org/10.1186/1749-799X-8-20

    Article  PubMed  PubMed Central  Google Scholar 

  68. White PB, Meftah M, Ranawat AS et al (2016) A comparison of blood metal ions in total hip arthroplasty using metal and ceramic heads. J Arthroplasty 31:2215–2220. https://doi.org/10.1016/j.arth.2016.03.024

    Article  PubMed  Google Scholar 

  69. Whitehouse MR, Endo M, Zachara S et al (2015) Adverse local tissue reactions in metal-on-polyethylene total hip arthroplasty due to trunnion corrosion: the risk of misdiagnosis. Bone Joint J 97-b:1024–1030. https://doi.org/10.1302/0301-620x.97b8.34682

    Article  CAS  PubMed  Google Scholar 

  70. Wight CM, Lanting B, Schemitsch EH (2017) Evidence based recommendations for reducing head-neck taper connection fretting corrosion in hip replacement prostheses. Hip Int 27:523–531. https://doi.org/10.5301/hipint.5000545

    Article  PubMed  Google Scholar 

  71. Willis CD, McNeil JJ, Cameron PA et al (2012) Monitoring drug safety with registries: useful components of postmarketing pharmacovigilance systems. J Clin Epidemiol 65:121–125. https://doi.org/10.1016/j.jclinepi.2011.06.017

    Article  PubMed  Google Scholar 

  72. Wyatt MC, Roberton A, Foxall-Smi M et al (2020) Does vitamin E highly-crosslinked polyethylene convey an advantage in primary total hip replacement? A systematic review and meta-analysis. Hip Int 30:598–608. https://doi.org/10.1177/1120700019858335

    Article  PubMed  Google Scholar 

  73. Wyles CC, Jimenez-Almonte JH, Murad MH et al (2014) There are no differences in short- to mid-term survivorship among total hip-bearing surface options: a network meta-analysis. Clin Orthop Relat Res 473:2031–2041. https://doi.org/10.1007/s11999-014-4065-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Philippe Kretzer.

Ethics declarations

Interessenkonflikt

J. P. Kretzer ist Mitglied in der Arbeitsgruppe „Evidenzbasierte Medizin in Orthopädie und Unfallchirurgie“ der Deutschen Gesellschaft Für Orthopädie und Unfallchirurgie (DGOU). M. Uhler, S. Jäger, T. Bormann, R. Sonntag, M. Schonhoff und S. Schröder geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kretzer, J.P., Uhler, M., Jäger, S. et al. Tribologie in der Hüftendoprothetik. Orthopäde 50, 259–269 (2021). https://doi.org/10.1007/s00132-021-04077-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-021-04077-w

Schlüsselwörter

Keywords

Navigation