Skip to main content
Log in

Prävention von Infektionen nach offenen Frakturen

Prevention of infections following open fractures

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Offene Frakturen gehen mit einem hohen Risiko an offenen frakturassoziierte Infektionen (OFAI) einher, wobei die Therapie oft langwierig und komplikationsträchtig sein kann. Somit kommt bereits der OFAI-Prävention im Rahmen des Akutmanagements offener Frakturen eine hohe Bedeutung zu. Durch Wachsamkeit und eine vorausschauende Therapieplanung zwischen Unfall- und Entlassungstag kann das Risiko einer OFAI jedoch maßgeblich reduziert werden.

Abstract

Open fractures involve a high risk of open fracture-associated infections (OFAIs), and the treatment can often be protracted and complicated. Thus, prevention of OFAIs in the acute and perioperative management of open fractures is of great importance. Through vigilance and thorough treatment planning, between the day of injury and the hospital discharge, the risk of OFAIs can be considerably reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

GA:

Gustilo und Anderson

OFAI:

Offene frakturassoziierte Infektion

PMMA:

Polymethylmethacrylat

Literatur

  1. Bhandari M, Adili A, Schemitsch EH (2001) The efficacy of low-pressure lavage with different irrigating solutions to remove adherent bacteria from bone. J Bone Joint Surg Am 83:412–419

    Article  CAS  Google Scholar 

  2. Bhandari M, Jeray KJ, Petrisor BA et al (2015) A trial of wound irrigation in the initial management of open fracture wounds. N Engl J Med 373:2629–2641

    Article  CAS  Google Scholar 

  3. Burns TC, Stinner DJ, Mack AW et al (2012) Microbiology and injury characteristics in severe open tibia fractures from combat. J Trauma Acute Care Surg 72:1062–1067

    Article  Google Scholar 

  4. Carsenti-Etesse H, Doyon F, Desplaces N et al (1999) Epidemiology of bacterial infection during management of open leg fractures. Eur J Clin Microbiol Infect Dis 18:315–323

    Article  CAS  Google Scholar 

  5. Chang Y, Bhandari M, Zhu KL et al (2019) Antibiotic prophylaxis in the management of open fractures: a systematic survey of current practice and recommendations. JBJS Rev 7:e1

    Article  Google Scholar 

  6. Costa ML, Achten J, Bruce J et al (2018) Effect of negative pressure wound therapy vs standard wound management on 12-month disability among adults with severe open fracture of the lower limb: the WOLLF randomized clinical trial. JAMA 319:2280–2288

    Article  Google Scholar 

  7. Costa ML, Achten J, Knight R et al (2020) Effect of Incisional negative pressure wound therapy vs standard wound dressing on deep surgical site infection after surgery for lower limb fractures associated with major trauma: the WHIST randomized clinical trial. JAMA 323:519–526

    Article  Google Scholar 

  8. Friedrich P (1898) Die aseptische Versorgung frischer Wunden. Arch Klin Chir 57:288–310

    Google Scholar 

  9. Gopal S, Majumder S, Batchelor AG et al (2000) Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg Br 82:959–966

    Article  CAS  Google Scholar 

  10. Gustilo RB, Anderson JT (1976) Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am 58:453–458

    Article  CAS  Google Scholar 

  11. Gustilo RB, Mendoza RM, Williams DN (1984) Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 24:742–746

    Article  CAS  Google Scholar 

  12. Hassinger SM, Harding G, Wongworawat MD (2005) High-pressure pulsatile lavage propagates bacteria into soft tissue. Clin Orthop Relat Res 439:27–31

    Article  Google Scholar 

  13. Howlin RP, Brayford MJ, Webb JS et al (2015) Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother 59:111–120

    Article  CAS  Google Scholar 

  14. Hull PD, Johnson SC, Stephen DJ et al (2014) Delayed debridement of severe open fractures is associated with a higher rate of deep infection. Bone Joint J 96-B:379–384

    Article  CAS  Google Scholar 

  15. Jenkinson RJ, Kiss A, Johnson S et al (2014) Delayed wound closure increases deep-infection rate associated with lower-grade open fractures: a propensity-matched cohort study. J Bone Joint Surg Am 96:380–386

    Article  Google Scholar 

  16. Kleber C, Trampuz A (2014) Antibiotikaprophylaxe in der Orthopädie und Unfallchirurgie – was, wann und wie lange applizieren? OP-JOURNAL 30:8–10

    Article  Google Scholar 

  17. Lack WD, Karunakar MA, Angerame MR et al (2015) Type III open tibia fractures: immediate antibiotic prophylaxis minimizes infection. J Orthop Trauma 29:1–6

    Article  Google Scholar 

  18. Lee J (1997) Efficacy of cultures in the management of open fractures. Clin Orthop Relat Res 339:71–75

    Article  Google Scholar 

  19. Mcnally MA, Ferguson JY, Lau AC et al (2016) Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite: a prospective series of 100 cases. Bone Joint J 98-B:1289–1296

    Article  CAS  Google Scholar 

  20. Messner J, Papakostidis C, Giannoudis PV et al (2017) Duration of administration of antibiotic agents for open fractures: meta-analysis of the existing evidence. Surg Infect (Larchmt) 18:854–867

    Article  Google Scholar 

  21. Metsemakers WJ, Fragomen AT, Moriarty TF et al (2020) Evidence-based recommendations for local antimicrobial strategies and dead space management in fracture-related infection. J Orthop Trauma 34:18–29

    Article  Google Scholar 

  22. Morgenstern M, Vallejo A, Mcnally MA et al (2018) The effect of local antibiotic prophylaxis when treating open limb fractures: a systematic review and meta-analysis. Bone Joint Res 7:447–456

    Article  CAS  Google Scholar 

  23. Obremskey WT, Metsemakers WJ, Schlatterer DR et al (2020) Musculoskeletal infection in orthopaedic trauma: assessment of the 2018 international consensus meeting on musculoskeletal infection. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.19.01070

    Article  PubMed  Google Scholar 

  24. Patzakis MJ, Zalavras CG (2005) Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. J Am Acad Orthop Surg 13:417–427

    Article  Google Scholar 

  25. Pinto D, Manjunatha K, Savur AD et al (2019) Comparative study of the efficacy of gentamicin-coated intramedullary interlocking nail versus regular intramedullary interlocking nail in Gustilo type I and II open tibia fractures. Chin J Traumatol 22:270–273

    Article  Google Scholar 

  26. Pollak AN, Jones AL, Castillo RC et al (2010) The relationship between time to surgical debridement and incidence of infection after open high-energy lower extremity trauma. J Bone Joint Surg Am 92:7–15

    Article  Google Scholar 

  27. Rajasekaran S, Sabapathy SR (2007) A philosophy of care of open injuries based on the Ganga hospital score. Injury 38:137–146

    Article  CAS  Google Scholar 

  28. Riechelmann F, Kaiser P, Arora R (2018) Primäres Weichteilmanagement bei offenen Frakturen. Oper Orthop Traumatol 30:294–308

    Article  CAS  Google Scholar 

  29. Sellei RM, Hildebrand F, Pape HC (2014) Acute extremity compartment syndrome: current concepts in diagnostics and therapy. Unfallchirurg 117:633–649

    Article  CAS  Google Scholar 

  30. Valenziano CP, Chattar-Cora D, O’neill A et al (2002) Efficacy of primary wound cultures in long bone open extremity fractures: are they of any value? Arch Orthop Trauma Surg 122:259–261

    Article  Google Scholar 

  31. Van De Belt H, Neut D, Uges DR et al (2000) Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials 21:1981–1987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tazio Maleitzke.

Ethics declarations

Interessenkonflikt

T. Maleitzke, P. Eckerlin, T. Winkler und A. Trampuz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Aus Gründen der besseren Lesbarkeit wird in diesem Beitrag überwiegend das generische Maskulinum verwendet. Dies impliziert immer beide Formen, schließt also die weibliche Form mit ein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleitzke, T., Eckerlin, P., Winkler, T. et al. Prävention von Infektionen nach offenen Frakturen. Orthopäde 49, 679–684 (2020). https://doi.org/10.1007/s00132-020-03952-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-020-03952-2

Schlüsselwörter

Keywords

Navigation