Skip to main content

Advertisement

Log in

Biomechanik von Knorpel-Tissue-Engineering-Konstrukten

Sensitives Testverfahren zur Beurteilung deren biomechanischer Funktionalität und ihrer Weiterentwicklung nach In-vivo-Transplantation

Biomechanics of cartilage tissue engineering constructs

Sensitive test procedure for assessment of biomechanical functionality and further development after in vivo transplantation

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Spezifische biomechanische Eigenschaften stellen ein Qualitätsmerkmal von Knorpel-Tissue-Engineering(TE)-Konstrukten dar. Ziel der vorgestellten Studie war die Identifizierung eines sensitiven biomechanischen Testverfahrens, das die Beurteilung von Knorpel-TE-Konstrukten erlaubt, ohne das generierte Gewebe zu verletzen. Der gewählte Test nach dem „Very Low Rubber Hardness“(VLRH)-Prinzip konnte signifikante Unterschiede zwischen unterschiedlich lang in vitro kultivierten chondrozytenbesiedelten Konstrukten detektieren. Dabei ging eine erhöhte Menge an abgelagerten Matrixproteinen einher mit gesteigerten VLRH-Werten. Nach ektoper Implantation von Konstrukten ins SCID-Mausmodell ergab sich trotz signifikantem Verlust von Proteoglykanen keine Abnahme der VLRH-Werte. Eine funktionelle Beurteilung von TE-Konstrukten erfordert daher die Ermittlung biomechanischer und biochemischer Kenngrößen als Qualitätsmerkmal.

Abstract

Specific biomechanical properties represent important quality markers of cartilage tissue engineering (TE) constructs. The aim of the study was to identify a sensitive biomechanical test to assess mechanical properties of cartilage TE constructs. Biomechanical testing of in vitro cultivated constructs following the very low rubber hardness (VLRH) principle illustrated significant differences between constructs cultured under chondrogenic conditions over various periods of time. An increase in proteoglycan and collagen type II deposition corresponded to increasing VLRH hardness values. Although a decrease in proteoglycan was detected after ectopic implantation of constructs into SCID mice, no reduction in biomechanical hardness values was observed. A functional estimation of TE constructs requires determination of biomechanical and biochemical parameters as quality features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Baker BM, Shah RP, Huang AH et al (2011) Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng Part A 17:1445–1455

    Article  PubMed  CAS  Google Scholar 

  2. Benz K, Breit S, Lukoschek M et al (2002) Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 293:284–292

    Article  PubMed  CAS  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Eng J Med 331:889–895

    Article  CAS  Google Scholar 

  4. Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486

    PubMed  CAS  Google Scholar 

  5. Erickson IE, Huang AH, Chung C et al (2009) Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng Part A 15:1041–1052

    Article  PubMed  CAS  Google Scholar 

  6. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177

    Article  PubMed  CAS  Google Scholar 

  7. Frengen E, Thomsen P, Kristensen T et al (1991) Porcine SINEs: characterization and use in species-specific amplification. Genomics 10:949–956

    Article  PubMed  CAS  Google Scholar 

  8. Gavenis K, Schmidt-Rohlfing B, Mueller-Rath R et al (2006) In vitro comparison of six different matrix systems for the cultivation of human chondrocytes. In Vitro Cell Dev Biol Anim 42:159–167

    Article  PubMed  CAS  Google Scholar 

  9. Han SH, Kim YH, Park MS et al (2008) Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. J Biomed Mater Res Part A 87:850–861

    Article  Google Scholar 

  10. Huang AH, Stein A, Mauck RL (2010) Evaluation of the complex transcriptional topography of mesenchymal stem cell chondrogenesis for cartilage tissue engineering. Tissue Eng Part A 16:2699–2708

    Article  PubMed  CAS  Google Scholar 

  11. Hunter CJ, Mouw JK, Levenston ME (2004) Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartil 12:117–130

    Article  Google Scholar 

  12. Hunziker EB (1999) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartil 7:15–28

    Article  CAS  Google Scholar 

  13. Hunziker EB (2009) The elusive path to cartilage regeneration. Adv Mater 21:3419–3424

    Article  PubMed  CAS  Google Scholar 

  14. Kelly DJ, Crawford A, Dickinson SC et al (2007) Biochemical markers of the mechanical quality of engineered hyaline cartilage. Journal of materials science. Mater Med 18:273–281

    Article  CAS  Google Scholar 

  15. Kon E, Filardo G, Condello V et al (2011) Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med 39:1668–1675

    Article  PubMed  Google Scholar 

  16. Liu X, Sun H, Yan D et al (2010) In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 31:9406–9414

    Article  PubMed  CAS  Google Scholar 

  17. Ma PX, Schloo B, Mooney D et al (1995) Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res 29:1587–1595

    Article  PubMed  CAS  Google Scholar 

  18. Mauck RL, Seyhan SL, Ateshian GA et al (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30:1046–1056

    Article  PubMed  Google Scholar 

  19. Mehlhorn AT, Zwingmann J, Finkenzeller G et al (2009) Chondrogenesis of adipose-derived adult stem cells in a poly-lactide-co-glycolide scaffold. Tissue Eng Part A 15:1159–1167

    Article  PubMed  CAS  Google Scholar 

  20. Miller JR (1994) Use of porcine interspersed repeat sequences in PCR-mediated genotyping. Mamm Genome 5:629–632

    Article  PubMed  CAS  Google Scholar 

  21. Pietschmann MF, Horng A, Niethammer T et al (2009) Cell quality affects clinical outcome after MACI procedure for cartilage injury of the knee. Knee Surg Sports Traumatol Arthrosc 17:1305–1311

    Article  PubMed  Google Scholar 

  22. Russlies M, Ruther P, Koller W et al (2003) Biomechanical properties of cartilage repair tissue after different cartilage repair procedures in sheep. Z Orthop Ihre Grenzgeb 141:465–471

    Article  PubMed  CAS  Google Scholar 

  23. Steck E, Bertram H, Abel R et al (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23:403–411

    Article  PubMed  CAS  Google Scholar 

  24. Steck E, Bertram H, Walther A et al (2010) Enhanced biochemical and biomechanical properties of scaffolds generated by flock technology for cartilage tissue engineering. Tissue Eng Part A 16:3697–3707

    Article  PubMed  CAS  Google Scholar 

  25. Steck E, Burkhardt M, Ehrlich H et al (2010) Discrimination between cells of murine and human origin in xenotransplants by species specific genomic in situ hybridization. Xenotransplantation 17:153–159

    Article  PubMed  Google Scholar 

  26. Strobel P, Herrmann K (2006) Very low rubber hardness: a new hardness testing method for supersoft elastomers. KGK. Kautschuk, Gummi, Kunststoffe Juli/August:377–381

  27. Vunjak-Novakovic G, Martin I, Obradovic B et al (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17:130–138

    Article  PubMed  CAS  Google Scholar 

  28. Wang CC, Yang KC, Lin KH et al (2012) Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold. Biomaterials 33:120–127

    Article  PubMed  Google Scholar 

  29. Williamson AK, Masuda K, Thonar EJ et al (2003) Growth of immature articular cartilage in vitro: correlated variation in tensile biomechanical and collagen network properties. Tissue Eng 9:625–634

    Article  PubMed  CAS  Google Scholar 

  30. Winter A, Breit S, Parsch D et al (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48:418–429

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Durchführung der Studie wurde unterstützt durch das BMBF im Rahmen des Projekts „Funktionelle Qualitätssicherung von Regenerativen Gewebeersatzmaterialien für Knorpel und Meniskus (QuReGe)“. Förderkennzeichen 0315577G. Wir danken Michaela Burkhardt und Nicole Buchta für ihre exzellente technische Assistenz.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krase, A., Steck, E., Roth, W. et al. Biomechanik von Knorpel-Tissue-Engineering-Konstrukten. Orthopäde 42, 262–270 (2013). https://doi.org/10.1007/s00132-012-1956-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-012-1956-1

Schlüsselwörter

Keywords

Navigation