Skip to main content
Log in

Muskuloskelettale Biomechanik des Kniegelenks

Grundlagen für die präoperative Planung von Umstellung und Gelenkersatz

Musculoskeletal biomechanics of the knee joint

Principles of preoperative planning for osteotomy and joint replacement

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Der langfristige Erfolg operativer Eingriffe am Kniegelenk ist von der Qualität der Wiederherstellung eines natürlichen Bewegungsausmaßes bei moderater muskuloskelettaler Belastung abhängig. Wesentlich dafür ist die Berücksichtigung biomechanischen Wissens bei der präoperativen Planung und während der Operation. Bisher ist dieses Wissen nur in Büchern und Journalbeiträgen verfügbar und fließt lediglich in die präoperative Planung ein. Die Übertragung in die konkrete operative Situation ist jedoch vom Können und Wissen des Operateurs abhängig.

Mathematische Modelle besitzen das Potenzial, dem Operateur detaillierte, patientenspezifische Informationen zu den in vivo wirkenden Kräften und deren räumliche und zeitliche Verteilung zur Verfügung zu stellen. Ihr Einsatz in der Routine setzt jedoch eine umfangreiche Überprüfung voraus. Mit einem an Patientendaten validierten Berechnungsmodell wurde gezeigt, dass sowohl das tibiofemorale als auch das patellofemorale Gelenk infolge der Muskelaktivität bereits während Alltagsaktivitäten erheblichen Kräften ausgesetzt sind. Die Berechnungen legen nahe, dass die Kräfte bei einer Fehlstellung der anatomischen tibiofemoralen Achse von >4° deutlich ansteigen, das Ausmaß des Kraftanstiegs dabei jedoch interindividuell stark variieren kann. Um neben der Gesamtbelastung auch die genaue Verteilung der Kräfte innerhalb des Gelenks zu ermitteln, ist eine hinreichend genaue Beschreibung der Bewegung des Kniegelenks erforderlich. In Verbindung mit MR basierter In-vivo-Bildgebung bieten neue mathematische Modelle die Möglichkeit, die Kniebewegung des einzelnen Patienten genau wiederzugeben und den Einfluss der aktiven Muskulatur auf die Kinematik zu berücksichtigen.

Durch die Implementierung dieser Technologien in präoperative Planungs- und intraoperative Navigationssysteme eröffnet sich die Möglichkeit den Operateur bei seinem Vorgehen durch Vorhersagen der patientenspezifischen postoperativen Biomechanik zu unterstützen. Wir gehen davon aus, dass durch eine auf diese Weise optimierte Biomechanik auch die Funktionsparameter des künstlichen Gelenks entscheidend verbessert werden können.

Abstract

The long-term clinical outcome of surgical interventions at the knee is dependent upon the quality of the restoration of normal function, together with moderate musculoskeletal loading conditions. In order to achieve this, it is essential to consider biomechanical knowledge during the planning and execution of the procedures. Until now, such knowledge has only been available in books and journal manuscripts and is merely considered during preoperative planning. Its transfer into the specific intraoperative situation is, however, primarily dependent upon the surgeon’s skills and understanding.

Mathematical models hold the potential to provide the surgeon with detailed, patient-specific information on the in vivo forces, as well as their spatial and temporal distribution. Their application in clinical routine, however, requires a comprehensive validation. Based on a model validated against patient data, it has been shown that – mainly as a result of the action of the muscles – both the tibiofemoral as well as the patellofemoral joints experience substantial mechanical loads even during normal activities of daily living. The calculations further indicate that malalignment at the knee in the frontal plane of more than approximately 4° results in considerably increased forces across the tibiofemoral joint. The actual change in force to a given degree of malalignment might, however, vary greatly between subjects. In order to additionally determine the distribution of the forces in more detail, a sufficiently accurate model of knee joint kinematics is required. In combination with MR-based in vivo imaging techniques, new mathematical models offer the possibility to capture the individual characteristics of knee kinematics and might additionally allow the effect of muscle activity on joint kinematics to be considered.

By implementing these technologies in preoperative planning and navigation systems, up-to-date biomechanical knowledge can be made available at the surgeons’ fingertips. We propose that optimizing the biomechanical conditions through using these approaches will allow the long-term function of the replaced joint to be significantly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. NIH (2003) Consensus Statement on total knee replacement. NIH Consens State Sci Statements 20: 1–34

    Google Scholar 

  2. Anderson FC, Pandy MG (2001) Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 34: 153–161

    Article  PubMed  CAS  Google Scholar 

  3. Andriacchi TP, Alexander EJ (2000) Studies of human locomotion: past, present and future. J Biomech 33: 1217–1224

    Article  PubMed  CAS  Google Scholar 

  4. Benjamin J (2006) Component alignment in total knee arthroplasty. Instr Course Lect 55: 405–412

    PubMed  Google Scholar 

  5. Bergmann G, Deuretzbacher G, Heller M et al. (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34: 859–871

    Article  PubMed  CAS  Google Scholar 

  6. Bergmann G, Graichen F, Rohlmann A et al. (2007) Die Belastung orthopädischer Implantate. Messungen und praktische Anwendungen. Orthopade 36: 195–204

    Article  PubMed  CAS  Google Scholar 

  7. Blankevoort L, Huiskes R (1996) Validation of a three-dimensional model of the knee. J Biomech 29: 955–961

    Article  PubMed  CAS  Google Scholar 

  8. Brand RA, Pedersen DR, Davy DT et al. (1994) Comparison of hip force calculations and measurements in the same patient. J Arthroplasty 9: 45–51

    Article  PubMed  CAS  Google Scholar 

  9. Brand RA, Pedersen DR, Friederich JA (1986) The sensitivity of muscle force predictions to changes in physiologic cross-sectional area. J Biomech 19: 589–596

    Article  PubMed  CAS  Google Scholar 

  10. Cappozzo A, Catani F, Leardini A et al. (1996) Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech 11: 90–100

    Article  Google Scholar 

  11. Caruntu DI, Hefzy MS (2004) 3-D anatomically based dynamic modeling of the human knee to include Tibio-Femoral and Patello-Femoral joints. J Biomech Eng 126: 44–53

    Article  PubMed  Google Scholar 

  12. Chao EY, Rim K (1973) Application of optimization principles in determining the applied moments in human leg joints during gait. J Biomech 6: 497–510

    Article  PubMed  CAS  Google Scholar 

  13. Coventry MB (1985) Upper tibial osteotomy for osteoarthritis. J Bone Joint Surg Am 67: 1136–1140

    PubMed  CAS  Google Scholar 

  14. Crowninshield RD (1978) Use of optimization techniques to predict muscle forces. J Biomech Eng 100: 88–92

    Google Scholar 

  15. Dennis DA (2006) Trends in total knee arthroplasty. Orthopedics 29: S13–S16

    PubMed  Google Scholar 

  16. Erdemir A, McLean S, Herzog W, Bogert AJ van den (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech 22: 131–154

    Article  Google Scholar 

  17. Heller MO, Bergmann G, Deuretzbacher G et al. (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34: 883–893

    Article  PubMed  CAS  Google Scholar 

  18. Heller MO, König C, Graichen H et al. (2007) A new model to predict in vivo human knee kinematics under physiological-like muscle activation. J Biomech 40: 45–53

    Article  Google Scholar 

  19. Heller MO, Taylor WR, Leonhardt U et al. (2003) Towards integrating musculo-skeletal analyses into pre-operative planning. The influence of axial alignment on individual knee joint loading, in computer assisted orthopaedic surgery. In: Langlotz F, Davies BL, Bauer A (eds) Proceedings of the 3rd annual meeting of CAOS-International. Steinkopf, Darmstadt, pp 140–141

  20. Heller MO, Taylor WR, Perka C, Duda GN (2003) The influence of alignment on the musculo-skeletal loading conditions at the knee. Langenbecks Arch Surg 388: 291–297

    Article  PubMed  Google Scholar 

  21. Imran A, Huss RA, Holstein H, O’Connor JJ (2000) The variation in the orientations and moment arms of the knee extensor and flexor muscle tendons with increasing muscle force: a mathematical analysis. Proc Inst Mech Engl 214: 277–286

    Article  CAS  Google Scholar 

  22. Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73: 709–714

    PubMed  CAS  Google Scholar 

  23. Kellis E (2001) Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors. Clin Biomech 16: 229–236

    Article  CAS  Google Scholar 

  24. Komistek RD, Kane TR, Mahfouz M et al. (2005) Knee mechanics: a review of past and present techniques to determine in vivo loads. J Biomech 38: 215–228

    Article  PubMed  Google Scholar 

  25. Lamecker H, Wenckebach TH, Hege H-C et al. (2006) Atlas-basierte 3D-Rekonstruktion des Beckens aus 2D-Projektionsbildern. BVM. Springer, Hamburg

  26. Leutloff D, Tobian F, Perka C (2001) High tibial osteotomy for valgus and varus deformities of the knee. Int Orthop 25: 93–96

    Article  PubMed  CAS  Google Scholar 

  27. Morrey BF (1989) Upper tibial osteotomy for secondary osteoarthritis of the knee. J Bone Joint Surg Br 71: 554–559

    PubMed  CAS  Google Scholar 

  28. Nagura T, Dyrby CO, Alexander EJ, Andriacchi TP (2002) Mechanical loads at the knee joint during deep flexion. J Orthop Res 20: 881–886

    Article  PubMed  Google Scholar 

  29. O’Connor JJ, Shercliff TL, Biden E, Goodfellow JW (1989) The geometry of the knee in the sagittal plane. Proc Inst Mech Engl 203: 223–233

    Article  Google Scholar 

  30. Rand JA, Coventry MB (1988) Ten-year evaluation of geometric total knee arthroplasty. Clin Orthop 232: 168–173

    PubMed  Google Scholar 

  31. Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop 299: 153–156

    PubMed  Google Scholar 

  32. Sharma L, Song J, Felson DT et al. (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286: 188–195

    Article  PubMed  CAS  Google Scholar 

  33. Smith PN, Refshauge KM, Scarvell JM (2003) Development of the concepts of knee kinematics. Arch Phys Med Rehabil 84: 1895–1902

    Article  PubMed  Google Scholar 

  34. Taylor WR, Ehrig RM, Duda GN et al. (2005) On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. J Orthop Res 23: 726–734

    Article  PubMed  Google Scholar 

  35. Taylor WR, Heller MO, Bergmann G, Duda GN (2004) Tibio-femoral loading during human gait and stair-climbing. J Orthop Res 22: 625–632

    Article  PubMed  Google Scholar 

  36. Toutoungi DE, Zavatsky AB, O’Connor JJ (1997) Parameter sensitivity of a mathematical model of the anterior cruciate ligament. Proc Inst Mech Engl 211: 235–246

    Article  CAS  Google Scholar 

Download references

Danksagung

Diese Studie wurde u. a. durch Mittel der Deutschen Forschungsgemeinschaft (DFG, KFO 102/2 und SFB 760) ermöglicht.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.N. Duda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, M., Matziolis, G., König, C. et al. Muskuloskelettale Biomechanik des Kniegelenks. Orthopäde 36, 628–634 (2007). https://doi.org/10.1007/s00132-007-1115-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-007-1115-2

Schlüsselwörter

Keywords

Navigation