Skip to main content
Log in

The Effect of Different Intensities of Static Magnetic Field on Stress and Selected Reproductive Indices of the Zebrafish (Danio rerio) During Acute and Subacute Exposure

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The application of equipment and tools that produce a magnetic field is increasing in aquatic ecosystems. In the present study, the effects of acute (1 week) and subacute (3 weeks) exposures to different static magnetic fields (SMFs) of 2.5, 5, 7.5 mT on stress indices (cortisol and glucose), sex steroid hormones (17β-estradiol and 17-α hydroxy progesterone) and fecundity of the zebrafish (Danio rerio) were investigated. The obtained results showed a significant change in cortisol, glucose, 17β-estradiol (E2) and 17-α hydroxy progesterone (17-OHP) levels by enhancing the intensity and time of exposure to SMFs. In conclusion, the SMFs, especially at higher levels of intensities, showed physiologically harmful effects on the reproductive biology of the zebrafish during acute and subacute exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Akhras MA, Darmani H, Elbetieha A (2006) Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rats. Bioelectromagnetics 27:127–131

    Article  CAS  Google Scholar 

  • Andrulewicz E, Napierska D, Otremba Z (2003) The environmental effects of the installation and functioning of the submarine SwePol Link HVDC transmission line: a case study of the Polish Marine Area of the Baltic Sea. J Sea Res 49(4):337–345

    Article  Google Scholar 

  • Barton BA, Schreck CB (1987) Metabolic cost of acute physical stress in juvenile steelhead. Trans Am Fish Soc 116:257–263

    Article  Google Scholar 

  • Bonhomme-Faivre L, Mac´e A, Bezie Y (1998) Alterations of biological parameters in mice chronically exposed to low-frequency (50 Hz) electromagnetic fields. Life Sci 62(14):1271–1280

    Article  CAS  Google Scholar 

  • Fernanda SD, Débora F, Renan I, João GSR, Michele F, Alessandra M, Rodrigo EB, Angelo P, Leonardo JG (2018) Barcellos feeding regimen modulates zebrafish behavior. PeerJ 6:e5343

    Article  Google Scholar 

  • Formicki K, Szulc J, Korzelecka-Orkisz A, Tanski A, Kurzydłowski JK, Grzonka J, Kwiatkowski P (2015) The effect of a magnetic field on trout (Salmo trutta Linnaeus, 1758) sperm motility parameters and fertilisation rate. J Appl Ichthyol 31(1):136–146

    Article  CAS  Google Scholar 

  • Genba A, Taninaka M, Oda K, Kondo H (1963) Blood sugar determination by the o-toluidine method, with special reference to the use of the direct quantitative method. Rinsho Byori 11:116–119

    CAS  Google Scholar 

  • Gill AB, Kimber JA (2005) The potential for cooperative management of elasmobranchs and offshore renewable energy development in UK waters. J Mar Biol Assoc UK 85(5):1075–1081

    Article  Google Scholar 

  • Gill AB, Huang Y, Gloyne-Philips I, Metcalfe J, Quayle V, Spencer J, Wear-mouth V (2009) EMF-sensitive fish response to EM emissions from sub-sea electricity cables of the type used by the offshore renewable energy industry. Commissioned by Cowrie Ltd p. 68 (project reference COWRIE-EMF-1-06)

  • Gorczynska E, Wegrzynowicz R (1991) Glucose homeostasis in rats exposed to magnetic fields. Invest Radiol 26(12):1095–1100

    Article  CAS  Google Scholar 

  • Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH (2008) Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol Environ Saf 71(3): 895–902

    Article  CAS  Google Scholar 

  • Health Protection Agency (2008) Static Magnetic Fields. Report of the independent Advisory Group on Non-ionising Radiation. RCE-6. Documents of the Health Protection Agency. Radiation, Chemical and Environmental Hazards. Chilton UK

  • Heidari B, Roozati SA, Yavari L (2010) Changes in plasma levels of steroid hormones during oocyte development of Caspian Kutum (Rutilus frisii kutum, Kamensky, 1901). Anim Reprod 7(4):373–381

    Google Scholar 

  • Kubokawa K, Watanabe T, Yoshizaki M, Iwama M (1999) Effect of acute stress on plasma cortisol, sex steroid hormone and glucose level in male and female sockeye salmon during the breeding season. Aquaculture 172:335–349

    Article  CAS  Google Scholar 

  • Loghmannia J, Heidari B, Rozati SA, Kazemi S (2015) The physiological responses of the Caspian kutum (Rutilus frisii kutum) fry to the static magnetic fields with different intensities during acute and subacute exposures. Ecotoxicol Environ Saf 111:215–219

    Article  CAS  Google Scholar 

  • Mayden RL, Tang KL, Conway KW, Freyhof J, Chamberlain S, Haskins M, Schneider L, Sudkamp M (2007) Phylogenetic relationships of Danio within the order Cypriniformes: a framework for comparative and evolutionary studies of a model species. J Exper Zoo Part B Mol Dev Evol 308(5):642–654

    Article  CAS  Google Scholar 

  • Moon TW, Walsh PJ, Perry SF, Mommsen TP (1988) Effects of in vivo beta-adrenoceptor blockade on hepatic carbohydrate metabolism in rainbow trout. J Exp Zool 248:88–93

    Article  CAS  Google Scholar 

  • Nash JP, Davail- CuissetS B, Bhattacharyya S, Suter HC, Le Menn F, Kime DE (2000) An enzyme linked immunosorbant assay (ELISA) for testosterone, estradiol, and 17,20β-dihydroxy-4-pregenen-3-one using acetylcholinesterase as tracer: application to measurement of diel patterns in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 22(4):355–363

    Article  CAS  Google Scholar 

  • Noonan CW, Reif JS, Burch JB, Ichinose TY, Yost MG, Magnusson K (2002a) Relationship between amyloid beta protein and melatonin metabolite in a study of electric utility workers. J Occup Environ Med 44(8):769–775

    Article  CAS  Google Scholar 

  • Noonan CW, Reif JS, Yost M, Touchstone J (2002b) Occupational exposure to magnetic fields in case-referent studies of neurodegenerative diseases. Scand J Work Environ Health 28(1):42–48

    Article  Google Scholar 

  • Sadowski M, Winnicki A, Formicki K, Sobotinski A, Tanski A (2007) The effect of magnetic field on permeability of egg shells of salmonid fishes. Acta Ichthyol Piscat 37(2):129–135

    Article  Google Scholar 

  • Saldanha CJ, Luke RH, Schlinger BA (2011) Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr Rev 32(4):532–549

    Article  CAS  Google Scholar 

  • Skauli KS, Reitan JB, Walther BT (2000) Hatching in zebrafish (Danio rerio) embryos exposed to a 50 Hz magnetic field. Bioelectromagnetics 21(5):407–410

    Article  CAS  Google Scholar 

  • World Health Organization (2006) Static Fields (Environmental Health Criteria: 232). Geneva, Switzerland

    Google Scholar 

  • Zare S, Hayatgeibi H, Alivandi S, Ebadi AG (2005) Effects of whole-body magnetic field on changes of glucose and cortisol hormone in quinea pigs. Am J Biochem Biotechnol 4:209–211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Heidari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedigh, E., Heidari, B., Roozati, A. et al. The Effect of Different Intensities of Static Magnetic Field on Stress and Selected Reproductive Indices of the Zebrafish (Danio rerio) During Acute and Subacute Exposure. Bull Environ Contam Toxicol 102, 204–209 (2019). https://doi.org/10.1007/s00128-018-02538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-02538-1

Keywords

Navigation