Abstract
A total of 30 sediments, overlying water and porewater samples were collected from Lake Taihu, China for the analysis of PAHs. The total PAHs varied from 209 to 3,843 ng g−1 in sediments, from 238 to 7,422 ng L−1 in overlying water and from 2,012 to 19,899 ng L−1 in porewater, respectively. There are good correlations between sediment-porewater/sediment-overlying water partition coefficients and PAHs’ logKow values, with correlation coefficient of 0.94 and 0.95, respectively. The sediment PAHs in Lake Taihu originated from both pyrolytic and petrogenic sources, showing a mixed input pattern. Based on the numerical effect-based sediment quality guidelines of the United States, the sediments from Lake Taihu causing adverse effects by PAHs should have potential biological impact, but should have no impairment.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Booij K, Hoedemaker JR, Bakker J (2003) Dissolved PCBs, PAHs and HCB in porewaters and overlying waters of contaminated harbor sediments. Environ Sci Technol 37:4213–4220
Chen Y, Yin Y, Wang X, Guo H, Chen S, Mai B (2009) Polycyclic aromatic hydrocarbons and polychlorinated biphenyl in surface sediments of Taihu Lake:the distribution, sources and risk assessment. China Environmental Science 29:118–124 (In Chinese)
Cornelissen G, Breedveld GD, Kalaitzidis S, Christanis K, Kibsgaard A, Oen AMP (2006) Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environ Sci Technol 40:1197–1203
Fu S, Cheng HX, Liu YH, Xia XJ, Xu XB (2009) Composition, Distribution and Characterization of Polycyclic Aromatic Hydrocarbons in Soil in Linfen, China. Bull Environ Contam Toxicol 82:167–171
Hawthorne SB, Azzolina NA, Neuhauser EF, Kreitinger JP (2007) Predicting Bioavailability of sediment polycyclic aromatic hydrocarbons to hyalella azteca using equilibrium partitioning, supercritical fluid extraction, and porewater concentrations. Environ Sci Technol 41:6297–6304
Ji Y, Lu G, Qin J, Wu H (2010) Distribution and risk assessment of PAHs in surface sediment in northern part of Taihu Lake. Journal of Hohai University (Natural Sciences) 38:452–456 (In Chinese)
Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10:833–846
Liu G, Zhang G, Jin Z, Li J (2009) Sedimentary record of hydrophobic organic compounds in relation to regional economic development: A study of Taihu Lake, East China. Environ Pollut 157:2994–3000
Long ER, Macdonald DD, Smith SL (1995) Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19:81–97
Luo J, Pang Y, Lin Y, Luo S, Ye XY (2005) Study on flux of pollutants discharged into Taihu Lake through main inflow river channels. Journal of Hohai University (Natural Sciences) 33:131–135 (In Chinese)
Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ Jr, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347
Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environ Sci Technol 32:71–77
Qiao M, Wang CX, Huang SB, Wang DH, Wang ZJ (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33
Wang H, Wang CX, Wu WZ, Mo Z, Wang ZJ (2003) Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment. Chemosphere 50:557–562
Xu J, Yu Y, Wang P, Guo WF, Dai SG, Sun HW (2007) Polycyclic aromatic hydrocarbons in the surface sediments from Yellow River, China. Chemosphere 67:1408–1414
Yu Y, Xu J, Wang P, Sun HW, Dai SG (2009) Sediment-porewater partition of polycyclic aromatic hydrocarbons (PAHs) from Lanzhou Reach of Yellow River, China. J Hazard Mater 165:494–500
Zhang LM, Liu WJ, You BS, Bian B (2009) Characteristics of Pollutant Sources of Caoqiao River in Taihu Lake Basin. Res Environ Sci 22:1150–1155 (In Chinese)
Zhao ZH, Zhang L, Wu JL, Fan CX (2009) Distribution and bioaccumulation of organochlorine pesticides in surface sediments and benthic organisms from Taihu Lake, China. Chemosphere 77:1191–1198
Acknowledgments
This work was financially supported by China’s national basic research program: “Water environmental quality evolution and water quality criteria in lakes” (2008CB418201).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, Y., Lu, Y., Xu, J. et al. Spatial Distribution of Polycyclic Aromatic Hydrocarbons from Lake Taihu, China. Bull Environ Contam Toxicol 87, 80–85 (2011). https://doi.org/10.1007/s00128-011-0292-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00128-011-0292-1