Skip to main content
Log in

Copper Toxicity in Leaves of Elodea canadensis Michx.

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Elodea canadensis (Canadian waterweed) has an ability to accumulate and bioconcentrate heavy metals. In this work, selected cellular responses for Cu treatment were studied in leaves of E. canadensis. Short term experiments, i.e. 1 week exposure to 0.5, 1, 5, and 10 μM of Cu indicated that concentrations up to 10 μM Cu causes a pronounced accumulation of photosynthetic pigments, a drastic degradation of soluble proteins with molecular weight above 18 kDa and a rapid accumulation of polypeptides with molecular weight below 14 kDa. The connection of these observations with copper detoxification mechanisms in aquatic macrophytes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125. doi:10.1016/S0147-6513(03)00106-4

    Article  CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1995) Short protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi:10.1002/elps.1150080203

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Brown BT, Rattigan BM (1979) Toxicity of soluble copper and other metal ions to Elodea canadensis. Chemosphere 11:727–739

    Google Scholar 

  • Cobbett Ch, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

    Article  CAS  Google Scholar 

  • Cook CM, Kostidou A, Vardaka E, Lanaras T (1997) Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus vulgaris plants. Photosynthetica 34:179–193. doi:10.1023/A:1006832321946

    Article  CAS  Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528. doi:10.1111/j.1399-3054.1991.tb02942.x

    Article  Google Scholar 

  • De Vos CHR, Ten Bookum WM, Vooijs R, Schat H, De Kok LJ (1993) Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158

    Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: responses of antioxidant enzymes and antioxidants. Plant Sci 138:157–165. doi:10.1016/S0168-9452(98)00161-7

    Article  CAS  Google Scholar 

  • Dewez D, Geoffroy L, Vernet G, Popovic R (2005) Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquat Toxicol 74:150–159. doi:10.1016/j.aquatox.2005.05.007

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  CAS  Google Scholar 

  • Kappus H (1986) Overview of enzyme systems involved in bioreduction of drugs and in redox cycling. Biochem Pharmacol 35:1–6. doi:10.1016/0006-2952(86)90544-7

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol 148:350–382. doi:10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  • Logani MK, Davies RE (1980) Lipid oxidation biological effects and antioxidants—a review. Lipids 15:485–495. doi:10.1007/BF02534079

    Article  CAS  Google Scholar 

  • Ma M, Zhu W, Wang Z, Witkamp GJ (2003) Accumulation, assimilation and growth inhibition of copper on freshwater alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquat Toxicol 63:221–228. doi:10.1016/S0166-445X(02)00179-0

    Article  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342. doi:10.1023/A:1006818815528

    Article  CAS  Google Scholar 

  • Mal TK, Adorjan P, Corbett AL (2002) Effect of copper on growth of an aquatic macrophyte, Elodeac canadensis. Environ Pollut 120:307–311. doi:10.1016/S0269-7491(02)00146-X

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Mazurek U, Naglik T, Wilczok A, Latocha M (1990) Effect of cadmium on photosynthetic pigments in synchronously growing Chlorella cells. Acta Biochim Pol 37:391–394

    CAS  Google Scholar 

  • Myśliwa-Kurdziel B, Strzałka K (2002) Influence of metals on the biosynthesis of photosynthetic pigments. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, pp 201–228

    Google Scholar 

  • Myśliwa-Kurdziel B, Prasad MNV, Strzałka K (2004) Photosynthesis in metal plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer-Verlag, Heidelberg, pp 146–181 (Narosa New Delhi)

    Google Scholar 

  • Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Bot 60:219–226. doi:10.1016/j.envexpbot.2006.10.009

    Article  CAS  Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzałka K (2001) Physiological responses of Lemna trisulca L. (Duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889. doi:10.1016/S0168-9452(01)00478-2

    Article  CAS  Google Scholar 

  • Prasad MNV, Greger M, Aravind P (2006) Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. In: Prasad MNV, Sajwan KS, Naidu Ravi (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, Florida, pp 451–482 ((Taylor and Francis) Chap. 24)

    Google Scholar 

  • Rabe R, Schuster H, Kohler A (1982) Effects of copper chelate on photosynthesis and some enzyme activities of Elodea canadensis. Aquat Bot 14:67–175

    Google Scholar 

  • Rai UN, Gupta M, Tripathi RD, Chandra P (1998) Cadmium regulated nitrate reductase activity in Hydrilla verticillata. Water Air Soil Pollut 106:171–177. doi:10.1023/A:1004923908436

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48. doi:10.1007/BF02738153

    Article  CAS  Google Scholar 

  • Ribeyre F, Boudou A (1994) Experimental study of inorganic and methylmercury bioaccumulation by four species of freshwater rooted macrophytes from water and sediment contamination sources. Ecotoxicol Environ Saf 28:270–286. doi:10.1006/eesa.1994.1052

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gomez M, del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686. doi:10.1046/j.1365-3040.2002.00850.x

    Article  CAS  Google Scholar 

  • Sanita di Toppi L, Vurro E, Rossi L, Marabottini R, Musetti R, Careri M, Maffini M, Mucchino C, Corradini C, Badiani M (2007) Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes. Chemosphere 68:769–780. doi:10.1016/j.chemosphere.2006.12.092

    Article  CAS  Google Scholar 

  • St-Cyr L, Campbell PGC, Guertin K (1994) Evaluation of the role of submerged plant beds in the metal budget of a fluvial lake. Hydrobiologia 291:141–156. doi:10.1007/BF00014705

    Article  CAS  Google Scholar 

  • Vajpayee P, Rai UN, Ali MB, Tripathi RD, Kumar A, Singh SN (2005) Possible involvement of oxidative stress in copper-induced inhibition of nitrate reductase activity in Vallisneria spiralis L. Bull Environ Contam Toxicol 74:745–754. doi:10.1007/s00128-005-0645-8

    Article  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512. doi:10.1111/j.1399-3054.1996.tb00465.x

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156. doi:10.1590/S1677-04202005000100012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KS and MNVP gratefully acknowledge the financial support through the Department of Science & Technology (DST), Government of India, New Delhi and the Ministry of Science and Higher Education (MNISW), Warsaw, Poland, in the framework of the “Indo-Polish Programme of Cooperation in Science & Technology” ref DST/INT/P-15/05 dt 7-11-2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Strzałka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malec, P., Maleva, M., Prasad, M.N.V. et al. Copper Toxicity in Leaves of Elodea canadensis Michx.. Bull Environ Contam Toxicol 82, 627–632 (2009). https://doi.org/10.1007/s00128-009-9650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9650-7

Keywords

Navigation