Skip to main content
Log in

Zinc-rich clays in supergene non-sulfide zinc deposits

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The nature and the origin of zinc clays are poorly understood. With the example of the Bou Arhous Zn-Pb ore deposit in the Moroccan High Atlas, this study presents new data for the mineralogical and chemical characterization of barren and zinc clays associated with non-sulfide zinc ores. In the field, white to ocher granular clays are associated with willemite (Zn2SiO4), while red clays fill karst-related cavities cutting across the non-sulfide ore bodies. Red clays (kaolinite, chlorite, illite, and smectite) present evidence of stratification that reflects internal sedimentation processes during the karst evolution. White clays contain 7-Å clay mineral/smectite irregular interstratified minerals with less than 20 % of smectite layers. Willemite is partially dissolved and is surrounded by authigenic zinc clay minerals. Together with XRD results, WDS analyses on newly formed clay aggregates suggest that this interstratified mineral is composed of fraipontite and sauconite. CEC measurements support that zinc is only located within the octahedral sheets. These new results support the following process: (i) dissolution of willemite, leading to release of Si and Zn, (ii) interaction between Zn-Si-rich solutions and residual-detrital clays, and (iii) dissolution of kaolinite and formation of interstratified zinc clay minerals that grew over detrital micas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abkhoshk E, Jorjani E, Al-Harahsheh MS, Rashchi F, Naazeri M (2014) Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 149:153–167. doi:10.1016/j.hydromet.2014.08.001

    Article  Google Scholar 

  • Ammann L, Bergaya F, Lagaly G (2005) Determination of the cation exchange capacity of clays with copper complexes revisited. Clay Miner 40:441–453. doi:10.1180/0009855054040182

    Article  Google Scholar 

  • Bayraktar I, Aslan A, Ersayin S (1998) Effects of primary slime and clay on selectivity of flotation of sub-volcanogenic complex polymetallic ores. Trans Instit Min Metal Sect B Applied Earth Sci 107:C71–C76

    Google Scholar 

  • Blanc J, Chamley H (1975) Remplissages de réseaux karstiques à la grotte de Saint-Marcel d’Ardèche. Quaternary 12:71–82. doi:10.3406/quate.1975.2084 (in French)

    Google Scholar 

  • Boni M, Large D (2003) Non-sulfide zinc mineralization in Europe: an overview. Econ Geol 98:715–729. doi:10.2113/gsecongeo.98.4.715

    Article  Google Scholar 

  • Boni M, Mondillo N (2015) The “calamines” and the “others”: the great family of supergene nonsulfide zinc ores. Ore Geol Rev 67:208–233. doi:10.1016/j.oregeorev.2014.10.025

    Article  Google Scholar 

  • Boni M, Terracciano R, Evans NJ, Laukamp C, Schneider J, Bechstadt T (2007) Genesis of vanadium ores in the otavi Mountainland, Namibia. Econ Geol 102:441–469. doi:10.2113/gsecongeo.102.3.441

    Article  Google Scholar 

  • Boni M, Balassone G, Arseneau V, Schmidt P (2009a) The nonsulfide zinc deposit at accha (Southern Peru): geological and mineralogical characterization. Econ Geol 104:267–289. doi:10.2113/gsecongeo.104.2.267

    Article  Google Scholar 

  • Boni M, Schmidt PR, De Wet JR, Singleton JD, Balassone G, Mondillo N (2009b) Mineralogical signature of nonsulfide zinc ores at Accha (Peru): a key for recovery. Int J Miner Process 93:267–277. doi:10.1016/j.minpro.2009.10.003

    Article  Google Scholar 

  • Boni M, Terracciano R, Balassone G, Gleeson SA, Matthews A (2011) The carbonate-hosted willemite prospects of the Zambezi Metamorphic Belt (Zambia). Mineral Deposita 46:707–729. doi:10.1007/s00126-011-0338-7

    Article  Google Scholar 

  • Bradbury MH, Baeyens B (1999) Modelling the sorption of Zn and Ni on Ca-montmorillonite. Geochim Cosmochim Acta 63:325–336. doi:10.1016/S0016-7037(98)00281-6

    Article  Google Scholar 

  • Brugger J, McPhail DC, Wallace M, Waters J (2003) Formation of willemite in hydrothermal environments. Econ Geol 98:819–835. doi:10.2113/gsecongeo.98.4.819

    Article  Google Scholar 

  • Calvo M, Viñals J, Triviño A (2007) Zálesiíte, felsobanyaite and fraipontite, in a conglomerate in Prullans, La Cerdanya, Catalonia (Spain). Miner Up I:49–51

    Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Charles N, Choulet F, Sizaret S, Chen Y, Barbanson L, Ennaciri A, Badra L, Branquet Y (2015) Internal structures and dating of non-sulphide Zn deposits using rock magnetism: insights from the Moroccan High Atlas. Mineral Deposita. doi:10.1007/s00126-015-0596-x

    Google Scholar 

  • Choulet F, Charles N, Barbanson L, Branquet Y, Sizaret S, Ennaciri A, Badra L, Chen Y (2014) Non-sulfide zinc deposits of the Moroccan high atlas: multi-scale characterization and origin. Ore Geol Rev 56:115–140. doi:10.1016/j.oregeorev.2013.08.015

    Article  Google Scholar 

  • Churakov SV, Dähn R (2012) Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environ Sci Technol 46:5713–5719. doi:10.1021/es204423k

    Article  Google Scholar 

  • Connelly D (2011) High clay ores: a mineral processing nightmare part 2. Aust J Mining 4

  • Cook RJ (1992) A comparison of methods for the extraction of smectites from calcareous rocks by acid dissolution techniques. Clay Miner 27:73–80

    Article  Google Scholar 

  • Coppola V, Boni M, Gilg HA, Balassone G, Dejonghe L (2008) The “calamine” nonsulfide Zn–Pb deposits of Belgium: petrographical, mineralogical and geochemical characterization. Ore Geol Rev 33:187–210. doi:10.1016/j.oregeorev.2006.03.005

    Article  Google Scholar 

  • Crundwell F, Moats M, Ramachandran V, Robinson T, Davenport WG (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, Oxford

    Google Scholar 

  • Dähn R, Baeyens B, Bradbury MH (2011) Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS – The strong/weak site concept in the 2SPNE SC/CE sorption model. Geochim Cosmochim Acta 75:5154–5168. doi:10.1016/j.gca.2011.06.025

    Article  Google Scholar 

  • Daliran F, Armstrong R, Borg G, Friese K, Sadeghi M, Vennemann T, Walther J, Woodhead JD (2009) Nonsulphide zinc deposits, Iran - the hypogene emplacement and supergene modification history of the angouran zinc deposit, NW-Iran. Bundesanstalt für Geowissenschaften und Rohstoffe

  • De Wet JR, Singleton JD (2008) Development of a viable process for the recovery of zinc from oxide ores. J South Afr Instit Min Metall 108:253

    Google Scholar 

  • Esquevin J (1957) Sur la composition minéralogique des moresnétites et l’existence probable d’une nouvelle phyllite zincifère. Comptes Rendus de l’Académie des Sciences (Paris) A/3150:4022. (in French)

  • Esquevin J (1960) Les Silicates de zinc, étude de produits de synthèse et des minéraux naturels. Institut national de la recherche agronomique, Saint-Amand (in French)

    Google Scholar 

  • Faust GT (1951) Thermal analysis and X-ray studies of sauconite and of some zinc minerals of the same paragenetic association. Am Mineral 36:795–822

    Google Scholar 

  • Foord EE, Taggart JE, Conklin NM (1983) Cuprian fraipontite and sauconite from the Defiance-Silver Bill mines, Gleeson, Arizona. Mineral Rec 14:131–132

    Google Scholar 

  • Fransolet A-M, Bourguignon P (1975) Données nouvelles sur la fraipontite de Moresnet (Belgique). Bull Soc Fr Mineral 98:235–244

    Google Scholar 

  • Frizon de Lamotte D, Leturmy P, Missenard Y, Khomsi S, Ruiz G, Saddiqi O, Guillocheau F, Michard A (2009) Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics 475:9–28. doi:10.1016/j.tecto.2008.10.024

    Article  Google Scholar 

  • Frondel C (1972) The minerals of Franklin and Sterling Hill, a checklist. Wiley-Interscience, New York

    Google Scholar 

  • Frondel C, Ito J (1966) Hendricksite, a new species of mica. Am Mineral 51:1107–1123

    Google Scholar 

  • Fuerstenau MC, Jameson GJ, Yoon R-H (2007) Froth flotation: a century of innovation. SME, Englewood

    Google Scholar 

  • Gaudefroy C (1959) Kaolinite et montmorillonite zincifères (sauconite?) d’Iboughalène. Not Mem du Serv Geol Maroc 144:152–153

    Google Scholar 

  • Gnoinski J (2007) Skorpion Zinc: optimization and innovation. J South Afr Instit Min Metall 107:657–662

    Google Scholar 

  • Hitzman MW, Reynolds NA, Sangster DF, Allen CR, Carman CE (2003) Classification, genesis, and exploration guides for nonsulfide zinc deposits. Econ Geol 98:685–714. doi:10.2113/gsecongeo.98.4.685

    Article  Google Scholar 

  • Iacoviello F, Martini I (2013) Clay minerals in cave sediments and terra rossa soils in the Montagnola Senese karst massif (Italy). Geol Q 57:527–536

    Google Scholar 

  • Jacquat O, Voegelin A, Juillot F, Kretzschmar R (2009) Changes in Zn speciation during soil formation from Zn-rich limestones. Geochim Cosmochim Acta 73:5554–5571

    Article  Google Scholar 

  • Jerzykowska I, Majzlan J, Michalik M, Göttlicher J, Steininger R, Clachowski A, Ruebenbauer K (2014) Mineralogy and speciation of Zn and As in Fe-oxide-clay aggregates in the mining waste at the MVT Zn-Pb deposits near Olkusz, Poland. Chem Erde 74:393–406

    Article  Google Scholar 

  • Kärner K (2006) The metallogenesis of the Skorpion non-sulphide zinc deposit, Namibia. Univerität Martin Luther, Dissertation

    Google Scholar 

  • Kloprogge JT, Hammond M, Hickey L, Frost RL (2001) A new low temperature synthesis route of Fraipontite (Zn, Al)3(Si, Al)2O5(OH)4. Mater Res Bull 36:1091–1098

    Article  Google Scholar 

  • Leblanc M (1968) Etude géologique et métallogénique du jbel Bou-Arhous et de son prolongement oriental (Haut Atlas marocian oriental). Not Mem Serv Geol Maroc 206:117–206 (in French)

    Google Scholar 

  • Lim J (2011) Controlling clay behaviour in suspension: developing a new paradigm for the minerals industry. Dissertation, University of Melbourne

  • Ma C, Eggleton RA (1999) Cation exchange capacity of kaolinite. Clay Clay Miner 47:174–180. doi:10.1346/CCMN.1999.0470207

    Article  Google Scholar 

  • Maltsev V, Korshunov V (1998) Geochemistry of fluorite and related features of the Kugitangtou Ridge Caves, Turkmenistan. J Caves Karst Stud 60:151–155

    Google Scholar 

  • Mattauer M, Tapponnier P, Proust F (1977) Sur les mecanismes de formation des chaines intracontinentales; l’exemple des chaines atlasiques du Maroc. Bull Soc Geol Fr XIX(7):521–526. doi:10.2113/gssgfbull.S7-XIX.3.521, in French

    Article  Google Scholar 

  • McPhail DC, Summerhayes E, Welch S, Brugger J (2003) The geochemistry and mobility of zinc in the regolith. Cooperative Research Centre for Landscape Environments and Mineral Exploration http://crcleme.org.au/Pubs/Advancesinregolith/AdvancesinRegolith.html

  • Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) Ion with triethylenetetramine and tetraethylenepentamine. Clay Clay Miner 47:386–388. doi:10.1346/CCMN.1999.0470315

    Article  Google Scholar 

  • Merlino S, Orlandi P (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. Am Mineral 86:1293–1301

    Article  Google Scholar 

  • Meunier A (2005) Clays. Springer Verlag, Berlin

    Google Scholar 

  • Mondillo N, Nieto F, Balassone G, Boni M (2014) Zn-rich clay minerals in supergene ores (Cuzco area, Peru); a TEM study with inferences for genesis and processing IMA meeting, Johannesburg

  • Moresi M, Mongelli G (1988) The relation between the Terra Rossa and the carbonate-free residue of the underlying limestones and dolostones in Apulia, Italy. Clay Miner 23:439–446

    Article  Google Scholar 

  • Newman ACD (1987) Chemistry of clays and clay minerals. Wiley, New-York

    Google Scholar 

  • Paquet H, Colin F, Duplay J, Nahon D, Millot G (1986) Ni, Mn, Zn, Cr - smectites, early and effective traps for transition elements in supergene ore deposits. In: Rodriguez-Clemente R, Tardy Y (eds) Geochemistry of the Earth Surface and Processes of Mineral Formation. Consejo Sup Invest Gient - CNRS, Madrid, pp 221–229

  • Reichert J, Borg G (2008) Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geol Rev 33:134–151. doi:10.1016/j.oregeorev.2007.02.006

    Article  Google Scholar 

  • Reynolds RCJ (1985) NEWMOD a computer program for the calculation of one-dimensional X-Ray diffraction patterns of mixed-layered clays. Reynolds, R C J, 8 Brook Dr., Hanover, New Hampshire

  • Robert J-L, Gasperin M (1985) Crystal structure refinement of hendricksite, a Zn- and Mn-rich trioctahedral, potassium mica: a contribution to the crystal chemistry of zinc-bearing minerals. Tschermaks Mineral Petrogr Mitt 34:1–14

    Article  Google Scholar 

  • Ross CS (1946) Sauconite - a clay mineral of the montmorillonite group. Am Mineral 31:411–424

    Google Scholar 

  • Rule AC, Radke F (1988) Baileychlore, the Zn end member of the trioctahedral chlorite series. Am Mineral 73:135–139

    Google Scholar 

  • Schlegel ML, Manceau A (2006) Evidence for the nucleation and epitaxial growth of Zn phyllosilicate on montmorillonite. Geochim Cosmochim Acta 70:901–917. doi:10.1016/j.gca.2005.10.021

    Article  Google Scholar 

  • Schlegel ML, Manceau A, Charlet L, Chateigner D, Hazemann J-L (2001) Sorption of metal ions on clay minerals. III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochim Cosmochim Acta 65:4155–4170. doi:10.1016/S0016-7037(01)00700-1

    Article  Google Scholar 

  • Takahashi T (1960) Supergene alteration of zinc and lead deposits in limestone. Econ Geol 55:1083–1115. doi:10.2113/gsecongeo.55.6.1083

    Article  Google Scholar 

  • Takahashi N, Tanaka M, Satoh T (1991) Structure of synthetic fraipontite. Nippon Kagaku Kaishi 7:962–966

    Article  Google Scholar 

  • Teixell A, Arboleya M-L, Julivert M, Charroud M (2003) Tectonic shortening and topography in the central High Atlas (Morocco). Tectonics 22:1051. doi:10.1029/2002TC001460

    Google Scholar 

  • Terracciano R (2008) Willemite mineralisation in Namibia and Zambia. Dissertation, Università degli Studi di Napoli Federico II

  • Tiller KG, Pickering JG (1974) The synthesis of zinc silicates at 20°C and atmospheric pressure. Clay Clay Miner 22:409–416. doi:10.1346/CCMN.1974.0220507

    Article  Google Scholar 

  • Warme JE (1988) Jurassic carbonate facies of the Central and Eastern High Atlas rift, Morocco. In: Jacobshagen PDVH (ed) The atlas system of Morocco. Springer, Berlin, pp 169–199

    Chapter  Google Scholar 

  • Will P, Friedrich F, Hochleitner R, Gilg HA (2014) Fraipontite in the hydrothermally overprinted oxidation zone of the Preguiça mine, Southern Portugal. Mid-European Clay Conference, Dresden

    Google Scholar 

  • Will P, Friedrich F, Grathoff G, Hochleitner R, Gilg HA (2015) Fraipontite/sauconite – a new interstratified clay mineral from the oxidation zone of the Zn-Pb-deposit Preguiça, Southern Portugal. EuroClay Conference, Edinburgh

    Google Scholar 

  • Young B, Livingstone A, Thomson N (1992) Fraipontite from Wensleydale, North Yorkshire. Proc Yorks Geol Soc 49:125–127. doi:10.1144/pygs.49.2.125

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Managem Company for providing access to the Bou Arhous Mine and for having supported bulk rock analyses in their labs. We also thank Goka Katrawi for CEC measurements and Didier Convert-Gaubier for thin-section preparation. This study benefited from a research grant given by the Région Centre for the 2011–2014 CALAMINES project and from a financial support of Région Franche-Comté through the 2014 “Franco-Suisse” Argzinc project. Access to SEM facilities of the MIMENTO center was made in the frame of cooperative projects in the Renatech network. The authors thank Editor-in-Chief Bernd Lehmann and Associate Editor Hartwig Frimmel for handling manuscript and two anonymous referees, who provided constructive reviews that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Choulet.

Additional information

Editorial handling: H. Frimmel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

XRD patterns with peak indexation of representative samples of the three types of clay material (randomly oriented clay fraction preparation) (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choulet, F., Buatier, M., Barbanson, L. et al. Zinc-rich clays in supergene non-sulfide zinc deposits. Miner Deposita 51, 467–490 (2016). https://doi.org/10.1007/s00126-015-0618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0618-8

Keywords

Navigation