Skip to main content

Advertisement

Log in

Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Black shales and massive sulfides represent reduced lithofacies that require isolation from oxic environments to be preserved. This, together with the sedimentary affinity of both lithofacies, can explain their common concurrence in the geologic record. The present study is based on the comparison of Rammelsberg in Germany, Tharsis in Spain, and Draa Sfar in Morocco, three massive sulfide deposits closely associated with black shales that are distributed along the European and North African Variscan orogen. The study entails geochemical, biostratigraphic, and stratigraphic analyses of the black shale sequences hosting the three deposits and mineralogical and textural analyses of the sulfides. All three deposits were formed in immature, tectonically unstable basins within an active continental margin or continental magmatic arc. Their stratigraphic records consist of a sequence of black shales enclosing massive sulfides and variable proportions of bimodal volcanic and subvolcanic rocks. The major differences among the three deposits concern the size, composition, and mineralogy. Regarding age, they are diachronous and younger southward: Rammelsberg is middle Eifelian, Tharsis latest Famennian, and Draa Sfar late Viséan. The study of redox conditions of the paleoenvironment using organic and inorganic proxies highlights similarities and significant differences among the three ore-hosting basins during massive sulfide and black shale deposition. The black shales generally display low Corg and high Stot contents. At Rammelsberg, the Stot/Ctot ratios provide values typical for normal Middle Devonian marine environments, which suggests that the original reactive organic C is now fixed in carbonates. At Tharsis, most of the samples have Corg >1 and Stot/Corg values equivalent to those of Devonian–Carboniferous normal marine sediments. However, some pyritic hanging-wall samples have Corg <1 and Stot up to 5 wt.%, suggesting the epigenetic addition of HS. The Stot/Corg ratio for the Draa Sfar samples resembles that of Middle Carboniferous normal marine environments. Geochemical inorganic proxies used to define the environmental conditions include the enrichment factors of U (UEF) and Mo (MoEF) together with V/Cr and V/(V + Ni) ratios. Footwall shales at Filón Norte (Tharsis) show positive and eventually elevated UEF and MoEF values, which suggests anoxic conditions, whereas at Rammelsberg and Draa Sfar oxic bottom water is indicated. The relations V/Cr and V/(V + Ni) in all three cases point to a redox boundary near the sediment–water interface, although at Tharsis some samples indicate anoxic/euxinic conditions (i.e., V/(V + Ni) >0.9). Regarding the environmental conditions of the source areas, feldspar illitization and selective depletion in Na and Ca occurred at the three studies sites. Available sulfur isotopic data from the Rammelsberg and Tharsis sulfide ore indicate that biogenic reduction of marine sulfate was a major sulfur source during massive sulfide generation. Nevertheless, a hydrothermal sulfur source has also been detected. At Rammelsberg, this is indicated from the polymetallic sulfides that replace sedimentary and diagenetic pyrite. At Tharsis, the bacteriogenic sulfur signature is also restricted to sulfide with less evolved textures, whereas a hydrothermal source is more evident in sulfides showing evidence of recrystallization. Both geochemical and isotopic data suggest that the bacteriogenic reduction process was inhibited by rapid burial. The sedimentation rates calculated for Rammelsberg, Tharsis, and Draa Sfar were in the range 7–13, 8–14, and 19–27 cm/ka, respectively. Continuous sedimentation of black shale favored the isolation of the massive sulfides and organic material from bottom waters and hence favored their preservation. Accordingly, the relationships between black shales and massive sulfides are considered to be casual. Nevertheless, the tectono-sedimentary evolution of each basin controlled the deposition of both black shales and massive sulfides and the parameters that favored their coeval deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abad I, Nieto F, Velilla N (2001) The phyllosilicates in diagenetic–metamorphic rocks of the South Portuguese Zone, southwestern Portugal. Can Miner 39:1571–1589

    Google Scholar 

  • Al-Aasm IS, Blaise B (1991) Interaction between hemipelagic sediment and a hydrothermal system: Middle Valley, northern Juan de Fuca Ridge, subarctic northeast Pacific. Mar Geol 98:25–40

    Google Scholar 

  • Algeo TJ, Lyons TW (2006) Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography 21, PA1016 doi:10.1029/2004PA001112

  • Algeo TJ, Maynard JB (2004) Trace-element behaviour and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318

    Google Scholar 

  • Algeo TJ, Tribovillard N (2009) Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem Geol 268:211–225

    Google Scholar 

  • Almodóvar GR, Sáez R, Pons JM, Maestre A, Toscano M, Pascual E (1998) Geology and genesis of the Aznalcóllar massive sulphide deposits, Iberian Pyrite Belt, Spain. Miner Deposita 33:111–136

    Google Scholar 

  • Anderson RF, Fleisher MQ, LeHuray AP (1989) Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochim Cosmochim Acta 53:2215–2224

    Google Scholar 

  • Anger G, Nielsen H, Puchelt H, Ricke W (1966) Sulfur isotopes in the Rammelsberg ore deposit (Germany). Econ Geol 61:511–536

    Google Scholar 

  • Angevine CL, Heller PL, Paola C (1990) Quantitative sedimentary basin modeling. AAPG Cont Edu Course 32:247

    Google Scholar 

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in Southern Europe and Northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 8:1305–1320

    Google Scholar 

  • Arthur MA, Sageman BB (1994) Marine black shales: depositional mechanism and environments of ancient deposits. An Rev Earth Planet Sci 22:499–551

    Google Scholar 

  • Barrie CT, Corfu F, Davis P, Coutts AC, MacEachern D (1999) Geochemistry of the Dundonald komatiite–basalt suite and genesis of the Dundeal Ni deposit, Abitibi subprovince, Canada. Econ Geol 94:845–866

    Google Scholar 

  • Beauchamp J, Izart A (1987) Early Carboniferous basins of the Atlas–Meseta domain (Morocco): sedimentary model and geodynamic evolution. Geology 15:797–800

    Google Scholar 

  • Belkabir A, Gibson HL, Marcoux E, Lentz D, Rziki S (2008) Geology and wall rock alteration at the Hercynian Draa Sfar Zn–Pb–Cu massive sulphide deposit, Morocco. Ore Geol Rev 33:280–306

    Google Scholar 

  • Bernard AJ, Maier OW, Mellal A (1988) Aperçu sur les amas sulfurés massifs des hercynides Marocaines. Miner Deposita 23:104–114

    Google Scholar 

  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23

    Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulphur in the modern ocean: its geochemical and environmental significance. Am J Earth Sci 282:451–473

    Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation; an update. Geochim Cosmochim Acta 48:605–615

    Google Scholar 

  • Berner RA, Raiswell R (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim Cosmochim Acta 47:855–862

    Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace elements characteristic of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Google Scholar 

  • Bishop JKB (1988) The barite–opal–organic carbon association in organic particulate matter. Nature 331:341–343

    Google Scholar 

  • Bitterli P (1963) Aspects of the genesis of bituminous rock sequences. Geol Mijnb 24:183–201

    Google Scholar 

  • Bordonaro M, Gaillet JL, Michard A (1979) Le géosynclinal carbonifère sud-mésétien dans les Jebilet (Maroc); une corrélation avec la province pyriteuse du sud de l’Espagne. CR Acad Sci Paris Sér D 288:1371–1374

    Google Scholar 

  • Bottjer DJ, Droser ML (1991) Ichnofabric and basin analysis. Palaios 6:199–205

    Google Scholar 

  • Brumsack HJ (2006) The trace metal content of recent organic carbon rich sediments: implications from Cretaceous black shale formation. Palaeogeogr Palaeoclimat Palaeoecol 232:344–361

    Google Scholar 

  • Buchholz P, Luppold FW (2008) Litho- und Biostratigrafie des älteren Mitteldevons im Oberharz. Z dt Ges Geowiss 159:263–281

    Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114:315–329

    Google Scholar 

  • Clayton G, Coquel R, Doubinger J, Gueinn KJ, Loboziak S, Owens B, Streel M (1977) Carboniferous miospores of western Europe: illustration and zonation. Meded Rijks Geol Dienst 29:71

    Google Scholar 

  • Condie KC (2004) Supercontinent and superplume events: distinguishing signals in the geologic record. Phys Earth Plan Int 146:319–332

    Google Scholar 

  • Cooke DR, Bull SW, Large RR, McGoldrick PJ (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb–Zn (SEDEX) deposits. Econ Geol 95:1–18

    Google Scholar 

  • Dagbert M, Harfi M (2002) Resource estimation for the Draa Sfar South polymetallic deposit. Expl Min Geol 11:99–112

    Google Scholar 

  • Dean WE, Arthur MA (1989) Iron–sulfur–carbon relationships in organic-carbon-rich sequences. I: Cretaceous Western Interior Seaway. Am J Sci 289:708–743

    Google Scholar 

  • Eastoe CJ, Gustin MM (1996) Volcanogenic massive sulfide deposits and anoxia in the Phanerozoic oceans. Ore Geol Rev 10:179–197

    Google Scholar 

  • Eder W, Franke W (1982) Death of Devonian reefs. N Jb Geol Paläont Abh 163:241–243

    Google Scholar 

  • Eldridge CS, Compston W, Williams IS, Both RA, Walshe JL, Ohmoto H (1988) Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe Shrimp: I. An example from the Rammelsberg orebody. Econ Geol 83:443–449

    Google Scholar 

  • Ellenberg F, Tamain G (1980) Hercynian Europe. Episodes 1:22–27

    Google Scholar 

  • Erickson BE, Helz GR (2000) Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim Cosmochim Acta 64:1149–1158

    Google Scholar 

  • Essaifi A, Lagarde JL, Capdevila R (2001) Deformation and displacement from shear zone patterns in the Variscan upper crust, Jebilet, Morocco. J Afr Earth Sci 32:335–350

    Google Scholar 

  • Essaifi A, Potrel A, Capdevila R, Lagarde JL (2003) Datation U–Pb: âge de mise en place du magmatisme bimodal des Jebilet centrales (chaîne Varisque, Maroc). CR Geosci Paris Sér D 335:193–203

    Google Scholar 

  • Felenc J, Fournier M, Hmeurras M (1986) Contrôles géologiques des amas à pyrrhotine des Jebilet et Guemassa. Définition des guides de recherche. Rapp BRGM 86:54

    Google Scholar 

  • Franklin JM, Lydon JW, Sangster DF (1981) Volcanic-associated massive sulfide deposits. In: Skinner BJ (ed) Econ Geol 75th Anniversary Volume., pp 485–627

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th anniversary volume., pp 523–560

  • Franzke HJ, Zerjadtke W (1992) Über strukturelle Aspekte der hydrothermalen Gangmineralisation des Unterharzes. Z Geol Wiss 20:219–232

    Google Scholar 

  • González F, Moreno C, Sáez R, Clayton G (2002) Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): a palynological approach. J Geol Soc London 59:229–232

    Google Scholar 

  • Goodfellow WD (1987) Anoxic stratified oceans as a source of sulphur in sediment-hosted stratiform Zn–Pb deposits (Selwyn basin, Yukon, Canada). Chem Geol 65:359–382

    Google Scholar 

  • Goodfellow WD, Blaise B (1988) Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle Valley, northern Juan de Fuca Ridge. Can Mineral 26:675–696

    Google Scholar 

  • Goodfellow WD, Lydon JW (2007) Sedimentary exhalative (SEDEX) deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Can Spec Pap, Min Dep Div 5:163–183

    Google Scholar 

  • Goodfellow WD, Peter JA (1996) Sulphur isotope composition of the Brunswick No. 12 massive sulphide deposit, Bathurst Mining Camp: implications for ambient environment, sulphur source and ore genesis. Can J Earth Sci 33:231–251

    Google Scholar 

  • Goodfellow WD, Lydon JW, Turner RJW (1993) Geology and genesis of stratiform sediment-hosted (SEDEX) zinc–lead–silver sulphide deposits. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposit modeling. Geol Assoc Can Spec Pap 40:201–251

  • Gustafson LB, Williams N (1981) Sediment-hosted stratiform deposits of copper, lead and zinc. In: Skinner BJ (ed) Econ Geol 75th anniversary volume., pp 139–178

  • Hannak WW (1981) Genesis of the Rammelsberg ore deposit near Goslar/Upper Harz, Federal Republic of Germany. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits 9. Elsevier, Amsterdam, pp 551–642

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Google Scholar 

  • Hatch JR, Leventhal JS (1992) Relationship between inferred oxidation potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem Geol 99:65–82

    Google Scholar 

  • Helz GR, Miller CV, Charnock JM, Mosselmans JFW, Pattrick RAD, Garner CD, Vaughan DJ (1996) Mechanism of molybdenun removal from the sea and its concentration in black shales: EXAFS evidence. Geochim Cosmochim Acta 60:3631–3642

    Google Scholar 

  • Hinze C, Jordan H, Knoth W, Kriebel U, Martiklos G (1998) Geologische Karte Harz 1:100.000. Mit Erläuterungen auf der Rückseite. Halle

  • Hoffman DL, Algeo TJ, Maynard JB, Joachimski MM, Hower JC, Jaminski J (1998) Regional stratigraphic variation in bottom water anoxia in offshore core shales of Upper Pennsylvanian cyclothems from Eastern Midcontinent Shelf (Kansas), U.S.A. In: Schieber J, Zimmerle W, Sethi P (eds) Shales and mudstones I. E Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 243–269

  • Hollard H, Huvelin P, Mamet B (1977) Stratigraphie du Viséen supérieur des Jebilet et age de la mise en place de la nappe des Jebilet orientales (Maroc). Notes et Mém Serv Géol Maroc 37:7–22

    Google Scholar 

  • Hölzel M, Faber R, Wagreich M (2008) Decompaction Tool—software for subsidence analysis including statistical error quantification. Comp Geosci 34:454–1460

    Google Scholar 

  • Houari MR, Hoepffner C (2003) Late Carboniferous dextral wrench-dominated transpression along the North African craton margin (Eastern High-Atlas, Morocco). J Afr Earth Sci 37:11–24

    Google Scholar 

  • Huvelin P (1977) Étude géologique et gîtologique du Massif hercynien des Jebilet (Maroc occidental). Notes et Mém Serv Géol Maroc 232bis:1–1307

  • Johnson MJ (1993) The system controlling the composition of clastic sediments. In: Johnson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geol Soc Am Sp Pap 284:1–19

  • Jones B, Manning DAC (1994) Comparison of geochemical indices used for interpretation of paleoredox conditions in ancient mudstones. Chem Geol 111:111–129

    Google Scholar 

  • Kase K, Yamamoto M, Nakamura T, Mitsuno C (1990) Ore mineralogy and sulfur isotope study of the massive sulfide deposit of Filón Norte, Tharsis Mine, Spain. Miner Deposita 25:289–296

    Google Scholar 

  • Kaufmann B (2006) Calibrating the Devonian time scale: a synthesis of U–Pb ID–TIMS ages and conodont stratigraphy. Earth Sci Rev 76:175–190

    Google Scholar 

  • Kettler RM (2000) The interaction of organic matter and fluids during the genesis of some precious metal and volcanogenic massive sulfide deposits. In: Giordano TH, Kettler RM, Wood SA (eds) Ore genesis and exploration: the roles of organic matter. Rev Econ Geol 9. Soc Econ Geol, INC, Boulder, CO, USA, pp 301–313

  • Klinkhammer GP, Palmer MR (1991) Uranium in the oceans: where it goes and why. Geochim Cosmochim Acta 55:1799–1806

    Google Scholar 

  • Krebs W, Gwosdz W (1985) Ore controlling parameters of Devonian stratiform lead–zinc–barite ores in Central Europe. Geol Jb 70:9–36

    Google Scholar 

  • Langmuir D (1978) Uranium solution–mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

    Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models. Econ Geol 87:471–510

    Google Scholar 

  • Large D (2003) The tectonic setting of base-metal mineralization in the Rhenohercynian terranes of central Europe. In: Keely JG, Andrew CJ, Ashton JH, Boland MB, Earls G, Fusciardi L, Stanley G (eds) Europe’s major base metal deposits. Irish Association for Economic Geology, Dublin, pp 155–168

    Google Scholar 

  • Large D, Walcher E (1999) The Rammelsberg massive sulphide Cu–Zn–Pb–Ba-deposit, Germany: an example of sediment-hosted, massive sulphide mineralisation. Miner Deposita 34:522–538

    Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead–zinc deposits: a global perspective. In: Econ Geol 100th anniversary volume., pp 561–607

  • Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Sáez R (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the Thematic Issue. Miner Depos 33:2–30

    Google Scholar 

  • Leventhal JS (1979) The relationship between organic carbon and sulfide sulfur in recent and ancient marine and euxinic sediments. Am Geophy Union Trans 60:282

    Google Scholar 

  • Leventhal JS (1995) Carbon–sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochim Cosmochim Acta 59:1207–1211

    Google Scholar 

  • Liu L, Mishchenko MI, Arnott WP (2008) A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J Quant Spectrosc Radiat Transfer 109:2656–2663

    Google Scholar 

  • Lorenz V (1976) Formation of Hercynian subplates: possible causes and consequences. Nature 262:374–377

    Google Scholar 

  • Lotfi F, Belkabir A, Brown AC, Marcoux E, Brunet S, Maacha L (2009) Geology and mineralogy of the Hercynian Koudiat Aïcha polymetallic (Zn–Pb–Cu) massive sulfide deposit, Central Jebilet, Morocco. Expl Min Geol 17:145–162

    Google Scholar 

  • Lydon JW (1983) Chemical parameters controlling the origin and deposition of sediment-hosted stratiform lead–zinc deposits. Min Assoc Can Short Course Handbook 9:175–250

    Google Scholar 

  • Lyons TW, Gellatly AM, McGoldrick PJ, Kah LC (2006) Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry. In: Kesler SE, Ohmoto H (eds) Evolution of early Earth’s atmosphere, hydrosphere, and biosphere: constraints from ore deposits. GSA Mem 198:169–184

  • Lyons TW, Anbar AD, Severmann S, Scott C, Gill BC (2009) Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Ann Rev Earth Planet Sci 37:507–534

    Google Scholar 

  • Marcoux E (1998) Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt. Miner Deposita 33:45–58

    Google Scholar 

  • Marcoux E, Moëlo Y, Leistel JM (1996) Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Miner Deposita 31:1–26

    Google Scholar 

  • Marcoux E, Belkabir A, Gibson HL, Lentz D, Ruffet G (2008) Draa Sfar, Morocco: a Visean (331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane. Ore Geol Rev 33:307–328

    Google Scholar 

  • Marignac C, Diagana R, Cathelineau M, Boiron MC, Banks D, Fourcade S, Vallance J (2003) Remobilisation of base metals and gold by Variscan metamorphic fluids in the south Iberian Pyrite Belt: evidence from the Tharsis VMS deposit. Chem Geol 194:143–165

    Google Scholar 

  • Martin WR, Sayles FL (2004) Organic matter oxidation in deep-sea sediments: distribution in the sediment column and implications for calcite dissolution. Deep Sea Res II 53:771–792

    Google Scholar 

  • Martínez Catalán JR, Hatcher RDJr, Arenas R, Diaz García, F (2002) Variscan–Appalachian dynamics: the building of the Late Paleozoic basement. Geol Soc Am Spec Pap 364, Boulder, 305 pp

  • Mathur R, Ruiz J, Tornos F (1999) Age and sources of the ore at Tharsis and Rio Tinto, Iberian Pyrite Belt, from Re–Os isotopes. Miner Deposita 34:790–793

    Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model of the Variscan belt of Europe. Tectonophysics 126:329–374

    Google Scholar 

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Miner 2:169–200

    Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. GSA Spec Pap 284:21–40

    Google Scholar 

  • McManus J, Berelson WM, Klinkhammer GP, Jonson KS, Coale KH, Anderson RF, Kumar N, Burdige DJ, Hammond DE, Brumsack HJ, McCorkle DC, Rushdi A (1998) Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim Cosmochim Acta 62:3453–3472

    Google Scholar 

  • McManus J, Berelson WM, Klinkhammer GP, Hammond DE, Holm C (2005) Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochim Cosmochim Acta 69:95–108

    Google Scholar 

  • Menning M, Alekseev AS, Chuvashov BI, Davydov VI, Devuyst FX, Forke HC, Grunt TA, Hance L, Heckel PH, Izokh NG, Jin YG, Jones PJ, Kotlyar GV, Kozur HW, Nemyrovska TI, Schneider JW, Wang XD, Weddige K, Weyer D, Work DM (2006) Global time scale and regional stratigraphic reference scales of Central and Western Europe, East Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian correlation chart 2003 (DCP 2003). Palaeogeogr Palaeoclimat Palaeoecol 240:318–372

    Google Scholar 

  • Mitsuno C, Nakamura T, Kanehira K, Yamamoto M, Sugita M, Kase K, Thadeu D, Carvalho D, Arribas A (1986) Geological studies of the Iberian Pyrite Belt with special reference to its genetical correlation of the Yanahara ore deposit and others in the inner zone of SW Japan. University of Okayama Report, 300 pp

  • Moreno C, González F (2004) Estratigrafía de la Zona Sudportuguesa. In: Vera JA (ed) Geología de España. IGME-Soc Geol Esp, Madrid, pp 201–205

    Google Scholar 

  • Moreno C, Sierra S, Sáez R (1996) Evidence for catastrophism at the Famennian–Dinantian boundary in the Iberian Pyrite Belt. Recent advances. In: Strogen P, Somerville D, Jones GL (eds) Lower Carboniferous geology, Geol Soc Spec Pub 107:153–162

  • Moreno C, Sáez R, González F (2007) Paleosismicidad asociada al tránsito Devónico–Carbonífero en la Zona Surportuguesa (SW Ibérico). Geogaceta 43:35–38

    Google Scholar 

  • Moreno C, Sáez R, González F, Almodóvar G, Tosano M, Playford G, Alansari A, Rziki S, Bajddi A (2008) Age and depositional environment of the Draa Sfar massive sulfide deposit, Morocco. Miner Deposita 43:891–911

    Google Scholar 

  • Morford JL, Emerson SR (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta 63:1735–1750

    Google Scholar 

  • Morford JL, Martin WR, Carney CM (2009) Uranium diagenesis in sediments underlying bottom water with high oxygen content. Geochim Cosmochim Acta 73:2920–2937

    Google Scholar 

  • Mosier DL, Berger VI, Singer DA (2009) Volcanogenic massive sulfide deposits of the world - database and grade and tonnage models. US Geol Surv Open-File Rep 2009-1034, 46 pp

  • Mrini Z, Rafi A, Duthou JL, Vidal P (1992) Chronologie Rb-Sr des granïtoides hercyniens du Maroc: conséquences. Bull Soc Géol France 163:281–291

    Google Scholar 

  • Muchez P, Stassen P (2006) Multiple origin of the ‘Kniest feeder zone’ of the stratiform Zn–Pb–Cu ore deposit of Rammelsberg, Germany. Miner Deposita 41:46–51

    Google Scholar 

  • Mueller AG (2008) The Rammelsberg shale-hosted Cu-Zn-Pb sulfide-barite deposit, Germany: Linking SEDEX and Kuroko-type massive sulfides. Slide presentation and explanatory notes. https://www.e-sga.org/index.php?id=199

  • Müller G, Strauss W (1985) Beitrag zur Regionalmetamorphose des Harzes. Geol Rundsch 74:87–94

    Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans. I. Organic carbon preservation. Deep-Sea Res A 26:1347–1362

    Google Scholar 

  • Nesbitt HW (2003) Petrogenesis of siliciclastic sediments and sedimentary rocks. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks. Evolutionary considerations to mineral deposit-forming environments. Geol Assoc Can, Geotex 4:439–51

  • Newhouse WH, Flaherty GF (1930) The texture and origin of some banded or schistose sulphide ores. Econ Geol 25:600–620

    Google Scholar 

  • Nicolas A (1972) Was the Hercynian orogenic belt of Europe of the Andean type? Nature 236:221–223

    Google Scholar 

  • Nielsen H (1985) Sulfur isotope ratios in stratabound mineralizations in central Europe. Geol Jb 70:225–262

    Google Scholar 

  • Nieto JM, Almodóvar GR, Pascual E, Sáez R, Jagoutz E (2000) Evidencias isotópicas sobre el origen de los metales en los sulfuros masivos de la Faja Pirítica Ibérica. Cuad Lab Geol Laxe 25:139–142

    Google Scholar 

  • Oncken O, von Winterfeld C, Dittmar U (1999) Accretion of a rifted passive margin: the Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides). Tectonics 18:75–91

    Google Scholar 

  • Ozsoy E, Unluata U (1997) Oceanography of the Black Sea: a review of some recent results. Earth Sci Rev 42:231–272

    Google Scholar 

  • Piqué A (1994) Géologie du Maroc. Les domaines régionaux et leur évolution structurale. Editions PUMAG, Marrakech, p 284

    Google Scholar 

  • Piqué A, Michard A (1989) Moroccan Hercynides. A synopsis. The Palaeozoic sedimentary and tectonic evolution at the northern margin of West Africa. Am J Sci 29:286–330

    Google Scholar 

  • Playford G, González F, Moreno C, Al Ansari A (2008) Palynostratigraphy of the Sarhlef Series (Mississippian), Jebilet Massif, Morocco. Micropaleont 54:89–124

    Google Scholar 

  • Pratt LM, Warner MC (2000) Roles of organic matter in shale- and carbonate-hosted base metal deposits. In: Giordano T, Kettler RM, Wood SA (eds) Ore genesis and exploration: the roles of organic matter. Rev Econ Geol 9:281–299

  • Racki G (2005) Toward understanding Late Devonian global events: few answers, many questions. In: Over DJ, Morrow JR, Wignall PB (eds) Developments in paleontology and stratigraphy, V. 20 Understanding Late Devonian and Permian-Triassic biotic and climatic events. Elsevier, Amsterdam, pp 5–36

  • Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724

    Google Scholar 

  • Raiswell R, Berner RA (1986) Pyrite and organic matter in Phanerozoic normal marine shales. Geochim Cosmochim Acta 50:1967–1976

    Google Scholar 

  • Ramdohr P (1953) Mineralbestand, Strukturen und Genesis der Rammelsberg- Lagerstätte. Geol Jb 67:367–494

    Google Scholar 

  • Rimmer SM (2004) Geochemical paleoredox indicators in Devonian Mississippian black shales, Central Appalachian Basin (USA). Chem Geol 206:373–391

    Google Scholar 

  • Rimmer SM, Thompson JA, Goodnight SA, Robl T (2004) Multiple controls on preservation of organic matter in the Devonian-Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeogr Palaeoclimatol Palaeoecol 215:125–154

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Logman Scientific and Technical, Harlow, 352 pp

    Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined usiging discriminant function analysis of major-element data. Chem Geol 67:119–139

    Google Scholar 

  • Ross DA (1972) Red Sea hot brine area: revisited. Science 31:1455–1457

    Google Scholar 

  • Ross DJK, Bustin RM (2009) The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Petrol Geol 26:916–927

    Google Scholar 

  • Sáez R, Pascual E, Toscano M, Almodóvar GR (1999) The Iberian type of volcano-sedimentary massive sulphide deposits. Miner Deposita 34:549–570

    Google Scholar 

  • Sáez R, Moreno C, González F (2005) Los diques clásticos de Filón Norte (Tharsis). Interpretación en relación con la crisis finidevónica de la cuenca de la Faja Pirítica Ibérica. Geogaceta 37:59–62

    Google Scholar 

  • Sageman BB, Lyons TW (2004) Geochemistry of fine-grained sediments and sedimentary rocks. In: MacKenzie F (ed) Treatise on Geochemistry 7. Elsevier, Amsterdam, pp 115–158

    Google Scholar 

  • Sageman BB, Wignall PB, Kauffman EG (1991) Biofacies models for organic-rich facies: tool for paleoenvironmental analysis. In: Einsele G, Seilacher A, Ricken W (eds) Cycles and Events in Stratigraphy. Springer Verlag, Berlin, pp 542–564

    Google Scholar 

  • Sageman BB, Murphy AE, Werne JP, Ver Straeten CA, Hollander DJ, Lyons TW (2003) A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian Appalachian basin. Chem Geol 195:229–273

    Google Scholar 

  • Sangster DF, Scott SD (1976) Precambrian, strata-bound, massive Cu-Zn-Pb sulphide ores in North America. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits 6. Elsevier, Amsterdam, pp 129–222

    Google Scholar 

  • Sato T (1972) Behaviours of ore-forming solutions in seawater. Min Geol 22:31–42

    Google Scholar 

  • Savrda CE, Bottjer DJ, Seilacher A (1991) Redox-related benthic events. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 524–541

    Google Scholar 

  • Schermerhorn LJ (1971) An outline stratigraphy of the Iberian Pyrite Belt. Bol Geol Min Esp 83:239–268

    Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching: an explanation of post-mid-Cretaceous subsidence of the central North Sea basin. J Geophys Res 85:3711–3939

    Google Scholar 

  • Sethi PS, Schieber J (1998) Economic aspects of shales and clays: an overview. In: Schieber J, Zimmerle W, Sethi P (eds) Shales and mudstones II, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 237–253

    Google Scholar 

  • Silva JB, Oliveira JT, Ribeiro A (1990) South Portuguese Zone, structural outline. In: Dallmeyer RD, Martínez-García E (eds) Pre-Mesozoic geology of Iberia. Springer, Berlin, pp 348–362

    Google Scholar 

  • Simancas JF, Tahiri A, Azor A, Lodeiro FG, Martínez Poyatos DJ, El Hadi H (2005) The tectonic frame of the Variscan–Alleghanian orogen in Southern Europe and Northern Africa. Tectonophysics 398:181–198

    Google Scholar 

  • Simoneit BRT (2000) Submarine and continental hydrothermal systems. A review of organic matter alteration and migration processes and comparison with conventional sedimentary basins. In: Giordano TH, Kettler RM, Wood SA (eds) Ore genesis and exploration: the roles of organic matter. Rev Econ Geol 9:193–214

  • Simoneit BRT, Gize AP (2000) Analytical techniques for organic matter characterization in ore deposits. In: Giordano TH, Kettler RM, Wood SA (eds) Ore genesis and exploration: the roles of organic matter. Rev Econ Geol 9:27–61

  • Solomon M, Tornos F, Gaspar OC (2002) Explanation for many of the unusual features of the massive sulfide deposits of the Iberian Pyrite Belt. Geology 30:87–90

    Google Scholar 

  • Sperling H (1986) Das Neue Lager der Blei-Zink-Erzlagerstätte Rammelsberg. Geol Jb 85:5–177

    Google Scholar 

  • Sperling H, Walcher E (1990) Die Blei-Zink-Erzlagerstätte Rammelsberg. Geol Jb 91:3–153

    Google Scholar 

  • Stein R (1986) Organic carbon and sedimentation rate—further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean. Mar Geol 72:199–209

    Google Scholar 

  • Stow DAV, Huc AY, Bertrand P (2001) Depositional processes of black shales in deep water. Mar Petrol Geol 18:491–498

    Google Scholar 

  • Strauss GK (1970) Sobre la geología a de la provincia piritífera del Suroeste de la Península Ibérica y de sus yacimientos, en especial sobre la mina de pirita de Lousal. Portugal Mem Inst Geol Min Esp 77:266

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312 pp

    Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307

    Google Scholar 

  • Tornos F, González Clavijo E, Spiro BF (1998) The Filón Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale hosted massive sulphide in a thin-skinned tectonic belt. Miner Deposita 33:150–169

    Google Scholar 

  • Tornos F, Solomon M, Conde C, Spiro BF (2008) Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ Geol 103:185–214

    Google Scholar 

  • Tourtelot B (1979) Black shale; its deposition and diagenesis. Clays and Clay Min 27:313–321

    Google Scholar 

  • Tribovillard N, Riboulleau A, Lyons T, Baudin F (2004) Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations. Chem Geol 213:385–401

    Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Google Scholar 

  • Turner RJW (1992) Formation of Phanerozoic stratiform sediment-hosted zinc–lead deposits: evidence for the critical role of oceanic anoxic events. Chem Geol 99:165–188

    Google Scholar 

  • Van Hinte JE (1978) Geohistory analysis—application of micropaleontology in exploration strategy. AAPG Bull 62:201–222

    Google Scholar 

  • Velasco F, Sánchez-España J, Boyce AJ, Fallick AE, Sáez R, Almodóvar GR (1998) A new sulphur isotopic study of some Iberian Pyrite Belt deposits: evidence of a textural control on sulphur isotope composition. Miner Deposita 34:4–18

    Google Scholar 

  • Walker RR, Matulich A, Amos AC, Watkins JJ, Mannard GW (1975) The geology of the Kidd Creek Mine. Econ Geol 70:80–89

    Google Scholar 

  • Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 225–250

    Google Scholar 

  • Weddige K (ed) (1996) Beiträge zu Gemeinschaftsaufgaben der deutschen Subkommission für Devon-Stratigraphie, 1: Devon-Korrelationstabelle 76:267–286

  • Weddige K (ed) (2003) Devonian correlation table. Supplements 2003. Senck leth 83:213–234

  • Werner W (1988) Synsedimentary faulting and sediment-hosted submarine–hydrothermal mineralization. A case study in the Rhenish Massif, Germany. Göttinger Arb z Geol u Paläont 36:1–206

    Google Scholar 

  • Werner W (1990) Examples of structural control of hydrothermal mineralization: fault zones in epicontinental sedimentary basins—a review. Geol Rundsch 79:279–290

    Google Scholar 

  • Wignall PB (1994) Black shales. Clarendon, Oxford, 127 pp

    Google Scholar 

  • Wignall PB, Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks: a new approach. Geology 16:452–455

    Google Scholar 

  • Winchester JA, Pharaoh YC, Verniers J (eds) (2002): Palaeozoic amalgamation of Central Europe. Geol Soc London, Spec Pub 201, 364 pp

  • Wood GD, Gabriel AM, Lawson JC (1996) Palynological techniques—processing and microscopy. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications 1. AASP Foundation, Dallas, pp 29–50

    Google Scholar 

  • Zheng Y, Anderson RF, van Geen A, Fleisher MQ (2002) Preservation of non-lithogenic particulate uranium in marine sediments. Geochim Cosmochim Acta 66:3085–3092

    Google Scholar 

  • Ziegler PA (1982) Geological atlas of Western and Central Europe. Elsevier, Amsterdam, 239 pp

    Google Scholar 

Download references

Acknowledgements

We are in debt to Dr. Walcher for his field guidance in the Rammelsberg district and to Marc Joubert (SEIEMSA) for core samples from Tharsis. Thanks also to Hans Sgier for his German language assistance. Permission to sample the Rammelsberg, Tharsis, and Draa Sfar mining districts was given by Preussag, Nueva Tharsis S.A.L., and Managem. We thank reviewers Dr. T. Ireland and Dr. J. Slack for providing helpful suggestions which improved the manuscript. Thanks are also due to Dr. R. Allen for his collaboration and infinite patience. This research was financed by the CICYT (Spain) Research Project CGL2006-08517, the Research Group THARSIS RNM 198-PAI (Junta de Andalucía), and the IGCP 502 project supported by UNESCO and IUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo Sáez.

Additional information

Editorial handling: B. Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 40 kb)

Appendix 1

Appendix 1

Table 2 Principal characteristics of the Rammelsberg, Tharsis, and Draa Sfar ore deposits

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáez, R., Moreno, C., González, F. et al. Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Miner Deposita 46, 585–614 (2011). https://doi.org/10.1007/s00126-010-0311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-010-0311-x

Keywords

Navigation