Skip to main content
Log in

Development of novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance and physical mapping of the resistance gene PmW6RS

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance were developed, and the resistance gene PmW6RS was physically mapped onto 6RS-0.58–0.66-bin corresponding to 18.38 Mb in Weining rye.

Abstract

Rye (Secale cereale L., RR) contains valuable genes for wheat improvement. However, most of the rye resistance genes have not been successfully used in wheat cultivars. Identification of new rye resistance genes and transfer of these genes to wheat by developing small fragment translocation lines will make these genes more usable for wheat breeding. In this study, a broad-spectrum powdery mildew resistance gene PmW6RS was localized on rye chromosome arm 6RS using a new set of wheat-rye disomic and telosomic addition lines. To further study and use PmW6RS, 164 wheat-rye 6RS translocation lines were developed by 60Coγ-ray irradiation. Seedling and adult stage powdery mildew resistance analysis showed that 106 of the translocation lines were resistant. A physical map of 6RS was constructed using the 6RS translocation and deletion lines, and PmW6RS was localized in the 6RS-0.58–0.66-bin, flanked by markers X6RS-3 and X6RS-10 corresponding to the physical interval of 50.23–68.61 Mb in Weining rye genome. A total of 23 resistance-related genes were annotated. Nine markers co-segregate with the 6RS-0.58–0.66-bin, which can be used to rapidly trace the 6RS fragment carrying PmW6RS. Small fragment translocation lines with powdery mildew resistance were backcrossed with wheat cultivars, and 39 agronomically acceptable homozygous 6RS small fragment translocation lines were obtained. In conclusion, this study not only provides novel gene source and germplasms for wheat resistance breeding, but also laid a solid foundation for cloning of PmW6RS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  • An D, Li L, Li J, Li H, Zhu Y (2006) Introgression of resistance to powdery mildew conferred by chromosome 2R by crossing wheat nullisomic 2D with rye. J Integr Plant Biol 48:838–847

    Google Scholar 

  • An D, Zheng Q, Luo Q, Ma P, Zhang H, Li L, Han F, Xu H, Xu Y, Zhang X, Zhou Y (2015) Molecular cytogenetic identification of a new wheat-rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS ONE 10:e0134534

    PubMed  PubMed Central  Google Scholar 

  • An D, Ma P, Zheng Q, Fu S, Li L, Han F, Han G, Wang J, Xu Y, Jin Y, Luo Q, Zhang X (2019) Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor Appl Genet 132:257–272

    CAS  PubMed  Google Scholar 

  • An D, Han G, Wang J, Yan H, Zhou Y, Cao L, Jin Y, Zhang X (2022) Cytological and genetic analyses of a wheat-rye 2RL ditelosomic addition line with adult plant resistance to powdery mildew. Crop J 10:911–916

    Google Scholar 

  • Barak S, Mudgil D, Khatkar BS (2013) Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT-Food Sci Technol 51:211–217

    CAS  Google Scholar 

  • Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 117:135–142

    CAS  PubMed  Google Scholar 

  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breeding 31:477–484

    CAS  Google Scholar 

  • Dai K, Zhao R, Shi M, Xiao J, Yu Z, Jia Q, Wang Z, Yuan C, Sun H, Cao A, Zhang R, Chen P, Li Y, Wang H, Wang X (2020) Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library. Theor Appl Genet 133:217–226

    CAS  PubMed  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll CJ, Jensen NF (1965) Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances1. Crop Sci 5:279–280

    Google Scholar 

  • Du H, Tang Z, Duan Q, Tang S, Fu S (2018) Using the 6RLKu minichromosome of rye (Secale cereale L.) to create wheat-rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. Int J Mol Sci 19:3933

    PubMed  PubMed Central  Google Scholar 

  • Duan Q, Wang Y, Qiu L, Ren T, Li Z, Fu S, Tang Z (2017) Physical location of new PCR-based markers and powdery mildew resistance gene(s) on rye (Secale cereale L.) chromosome 4 using 4R dissection lines. Front Plant Sci 8:1716

    PubMed  PubMed Central  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Google Scholar 

  • Fu S, Tang Z, Ren Z, Zhang H (2010) Transfer to wheat (Triticum aestivum) of small chromosome segments from rye (Secale cereale) carrying disease resistance genes. J Appl Genet 51:115–121

    CAS  PubMed  Google Scholar 

  • Fu S, Ren Z, Chen X, Yan B, Tan F, Fu T, Tang Z (2014) New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. J Plant Res 127:743–753

    CAS  PubMed  Google Scholar 

  • Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552

    PubMed  PubMed Central  Google Scholar 

  • Guo X, Shi Q, Liu Y, Su H, Zhang J, Wang M, Wang C, Wang J, Zhang K, Fu S, Hu X, Jing D, Wang Z, Li J, Zhang P, Liu C, Han F (2023) Systemic development of wheat-Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. Plant J 114:1475–1489

    Article  PubMed  Google Scholar 

  • Han G, Liu S, Jin Y, Jia M, Ma P, Liu H, Wang J, An D (2020) Scale development and utilization of universal PCR-based and high-throughput KASP markers specific for chromosome arms of rye (Secale cereale L.). BMC Genomics 21:206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao M, Liu M, Luo J, Fan C, Yi Y, Zhang L, Yuan Z, Ning S, Zheng Y, Liu D (2018) Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci 9:1040

    PubMed  PubMed Central  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    CAS  PubMed  Google Scholar 

  • Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969

    CAS  PubMed  Google Scholar 

  • Li J, Zhu X, Wan H, Wang Q, Tang Z, Fu S, Yang Z, Yang M, Yang W (2015) Identification of the 1RS-7DS.7DL wheat-rye small segment translocation lines. Hereditas 37:590–598

    CAS  PubMed  Google Scholar 

  • Li G, Tang L, Yin Y, Zhang A, Yu Z, Yang E, Tang Z, Fu S, Yang Z (2020a) Molecular dissection of Secale africanum chromosome 6Rafr in wheat enabled localization of genes for resistance to powdery mildew and stripe rust. BMC Plant Biol 20:134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Dundas I, Dong C, Li G, Trethowan R, Yang Z, Hoxha S, Zhang P (2020b) Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133:1095–1107

    CAS  PubMed  Google Scholar 

  • Li G, Wang L, Yang J, He H, Jin H, Li X, Ren T, Ren Z, Li F, Han X, Zhao X, Dong L, Li Y, Song Z, Yan Z, Zheng N, Shi C, Wang Z, Yang S, Xiong Z, Zhang M, Sun G, Zheng X, Gou M, Ji C, Du J, Zheng H, Doležel J, Deng XW, Stein N, Yang Q, Zhang K, Wang D (2021) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 53:574–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Zhou S, Liang X, Guo B, Han B, Han H, Zhang J, Lu Y, Zhang Z, Yang X, Li X, Liu W, Li L (2022) Chromosomal mapping of a locus associated with adult-stage resistance to powdery mildew from Agropyron cristatum chromosome 6PL in wheat. Theor Appl Genet 135:2861–2873

    CAS  PubMed  Google Scholar 

  • Liu C, Wang J, Fu S, Wang L, Li H, Wang M, Huang Y, Shi Q, Zhou Y, Guo X, Zhu C, Zhang J, Han F (2022) Establishment of a set of wheat-rye addition lines with resistance to stem rust. Theor Appl Genet 135:2469–2480

    CAS  PubMed  Google Scholar 

  • Lu P, Guo L, Wang Z, Li B, Li J, Li Y, Qiu D, Shi W, Yang L, Wang N, Guo G, Xie J, Wu Q, Chen Y, Li M, Zhang H, Dong L, Zhang P, Zhu K, Yu D, Zhang Y, Deal KR, Huo N, Liu C, Luo MC, Dvorak J, Gu YQ, Li H, Liu Z (2020) A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 11:680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Han G, Zheng Q, Liu S, Han F, Wang J, Luo Q, An D (2020) Development of novel wheat-rye chromosome 4R translocations and assignment of their powdery mildew resistance. Plant Dis 104:260–268

    CAS  PubMed  Google Scholar 

  • Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50

    CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Doležel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1:15186

    CAS  PubMed  Google Scholar 

  • Niu Z, Klindworth DL, Yu G, Friesen TL, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS (2014) Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor Appl Genet 127:969–980

    CAS  PubMed  Google Scholar 

  • Qie Y, Sheng Y, Xu H, Jin Y, Ma F, Li L, Li X, An D (2019) Identification of a new powdery mildew resistance gene pmDHT at or closely linked to the Pm5 locus in the Chinese wheat landrace Dahongtou. Plant Dis 10:2645–2651

    Google Scholar 

  • Rabanus-Wallace MT, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer KFX, Guo L, Poland J, Pozniak CJ, Walkowiak S, Melonek J, Praz CR, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, Börner A, Byrns B, Čížková J, Fowler DB, Fritz A, Himmelbach A, Kaithakottil G, Keilwagen J, Keller B, Konkin D, Larsen J, Li Q, Myśków B, Padmarasu S, Rawat N, Sesiz U, Biyiklioglu-Kaya S, Sharpe A, Šimková H, Small I, Swarbreck D, Toegelová H, Tsvetkova N, Voylokov AV, Vrána J, Bauer E, Bolibok-Bragoszewska H, Doležel J, Hall A, Jia J, Korzun V, Laroche A, Ma XF, Ordon F, Özkan H, Rakoczy-Trojanowska M, Scholz U, Schulman AH, Siekmann D, Stojałowski S, Tiwari VK, Spannagl M, Stein N (2021) Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 53:564–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reader S, Miller T (1991) The Introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57–60

    Google Scholar 

  • Ren T, Yang Z, Yan B, Zhang H, Fu S, Ren Z (2009) Development and characterization of a new 1BL·1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213

    Google Scholar 

  • Ren T, Tang Z, Fu S, Yan B, Tan F, Ren Z, Li Z (2017) Molecular cytogenetic characterization of novel wheat-rye T1RS. 1BL translocation lines with high resistance to diseases and great agronomic traits. Front Plant Sci 8:799

    PubMed  PubMed Central  Google Scholar 

  • Ren T, Ren Z, Yang M, Yan B, Tan F, Fu S, Tang Z, Li Z (2018) Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Mol Breeding 38:101

    Google Scholar 

  • Ren T, Sun Z, Ren Z, Tan F, Luo P, Tang Z, Fu S, Li Z (2020) Molecular and cytogenetic characterization of a wheat-rye 7BS.7RL translocation line with resistance to stripe rust, powdery mildew and Fusarium head blight. Phytopathology 110:1713–1720

    CAS  PubMed  Google Scholar 

  • Ren T, Sun Z, Hu Y, Ren Z, Tan F, Luo P, Li Z (2022a) Molecular cytogenetic identification of new wheat-rye 6R, 6RS, and 6RL addition lines with resistance to stripe rust and powdery mildew. Front Plant Sci 13:992016

    PubMed  PubMed Central  Google Scholar 

  • Ren T, Sun Z, Ren Z, Tan F, Luo P, Li Z (2022b) Development and molecular cytogenetic characterization of a novel wheat-rye T6RS. 6AL translocation line from Secale cereale L. Qinling with resistance to stripe rust and powdery mildew. Int J Mol Sci 23:10495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng B, Duan X (1991) Improvement of scale 0–9 method for scoring adult plant resistance to powdery mildew of wheat. Beijing Agr Sci 1:38–39

    Google Scholar 

  • Si Q, Zhang X, Duan X, Sheng B, Zhou Y (1992) On gene analysis and classification of powdery mildew (Erysiphe graminis f. sp. tritici) resistant wheat varieties. Acta Phytopathol Sin 22:349–355

    Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jorgensen LN, Hovmoller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    CAS  PubMed  Google Scholar 

  • Singh SP, Hurni S, Ruinelli M, Brunner S, Sanchez-Martin J, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B (2018) Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol 98:249–260

    CAS  PubMed  Google Scholar 

  • Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L (2016) Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet 129:1023–1034

    CAS  PubMed  Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    CAS  PubMed  Google Scholar 

  • Wang D, Zhuang L, Sun L, Feng Y, Pei Z, Qi Z (2010) Allocation of a powdery mildew resistance locus to the chromosome arm 6RL of Secale cereale L. cv. ‘Jingzhouheimai.’ Euphytica 176:157–166

    CAS  Google Scholar 

  • Wang J, Liu Y, Su H, Guo X, Han F (2017) Centromere structure and function analysis in wheat-rye translocation lines. Plant J 91:199–207

    CAS  PubMed  Google Scholar 

  • Wang J, Shi Q, Guo X, Han F (2019) Establishment and characterization of a complete set of Triticum durum-Thinopyrum elongatum monosomic addition lines with resistance to Fusarium head blight in wheat. J Genet Genomics 46:547–549

    PubMed  Google Scholar 

  • Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Cheng X, Wu J, Dong L, Chen W, Li W, Xiao G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu S, Bai G, Nevo E, Gao C, Ohm H, Kong L (2020) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368:eaba5435

    CAS  PubMed  Google Scholar 

  • Xi W, Tang ZX, Luo J, Fu S (2019) Physical location of new stripe rust resistance gene(s) and PCR-based markers on rye (Secale cereale L.) chromosome 5 using 5R dissection lines. Agronomy 9:498

    CAS  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones JDG, Karafiátová M, Vrána J, Bartoš J, Doležel J, Tian Y, Wu Y, Cao A (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878

    CAS  PubMed  Google Scholar 

  • Xing L, Yuan L, Lv Z, Wang Q, Yin C, Huang Z, Liu J, Cao S, Zhang R, Chen P, Karafiátová M, Vrána J, Bartoš J, Doležel J, Cao A (2021) Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat-Haynaldia villosa translocated chromosome 6VS.6AL. Plant Biotechnol J 19:1567–1578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang E, Li G, Li L, Zhang Z, Yang W, Peng Y, Zhu Y, Yang Z, Rosewarne GM (2016a) Characterization of stripe rust resistance genes in the wheat cultivar Chuanmai45. Int J Mol Sci 17:601

    PubMed  PubMed Central  Google Scholar 

  • Yang W, Wang C, Chen C, Wang Y, Zhang H, Liu X, Ji W (2016b) Molecular cytogenetic identification of a wheat–rye 1R addition line with multiple spikelets and resistance to powdery mildew. Genome 59:277–288

    CAS  PubMed  Google Scholar 

  • Yang G, Boshoff WHP, Li H, Pretorius ZA, Luo Q, Li B, Li Z, Zheng Q (2021) Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat-Thinopyrum ponticum translocation line WTT34. Theor Appl Genet 134:1587–1599

    CAS  PubMed  Google Scholar 

  • Yang G, Tong C, Li H, Li B, Li Z, Zheng Q (2022) Cytogenetic identification and molecular marker development of a novel wheat-Thinopyrum ponticum translocation line with powdery mildew resistance. Theor Appl Genet 135:2041–2057

    CAS  PubMed  Google Scholar 

  • Zeng F, Yang L, Gong S, Shi W, Zhang X, Wang H, Xiang L, Xue M, Yu D (2014) Virulence and diversity of Blumeria graminis f. sp. tritici populations in China. J Integr Agr 13:2424–2437

    Google Scholar 

  • Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299

    CAS  PubMed  Google Scholar 

  • Zhang P, Dundas IS, Xu SS, Friebe B, McIntosh RA, Raupp WJ (2017a) Chromosome engineering techniques for targeted introgression of rust resistance from wild wheat relatives. In: Periyannan S (ed) Wheat rust diseases. Methods in molecular biology. Humana Press, New York, pp 163–172

    Google Scholar 

  • Zhang Z, Song L, Han H, Zhou S, Zhang J, Yang X, Li X, Liu W, Li L (2017b) Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int J Mol Sci 18:2403

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Danilova T, Zhang M, Ren S, Zhu X, Zhang Q, Zhong S, Dykes L, Fiedler J, Xu S, Frels K, Wegulo S, Boehm J Jr, Cai X (2022) Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome. Theor Appl Genet 135:4409–4419

    CAS  PubMed  Google Scholar 

  • Zhao R, Wang H, Xiao J, Bie T, Cheng S, Jia Q, Yuan C, Zhang R, Cao A, Chen P, Wang X (2013) Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. Theor Appl Genet 126:2921–2930

    CAS  PubMed  Google Scholar 

  • Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y, Mascher M, Dvorak J, Luo M (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chin Spring Genome Assembly Plant J 107:303–314

    CAS  Google Scholar 

  • Zhu S, Liu C, Gong S, Chen Z, Chen R, Liu T, Liu R, Du H, Guo R, Li G, Li M, Fan R, Liu Z, Shen QH, Gao A, Ma P, He H (2022) Orthologous genes Pm12 and Pm21 from two wild relatives of wheat show evolutionary conservation but divergent powdery mildew resistance. Plant Commun 4:100472

    PubMed  PubMed Central  Google Scholar 

  • Zhuang L, Sun L, Li A, Chen T, Qi Z (2011) Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai. Mol Breeding 27:455–465

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Pro. Fangpu Han, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, for providing seed samples of 843, PI 613196, and the set of wheat-rye disomic and telosomic addition lines. We also thank Pro. Dengcai Liu and Dr. Ming Hao from the Triticeae Research Institute, Sichuan Agricultural University, Ya’an, China, for Pm56 seed sample LM47-6.

Funding

This research was supported by the National Key Research and Development Program of China (2021YFD1200600), the National Natural Science Foundation of China (31801358), and the Natural Science Foundation of Hebei Province (C2019503064).

Author information

Authors and Affiliations

Authors

Contributions

DGA conceived the research. JW, GHH, HL, HWY, LJC, and YLZ performed experiments, conducted fieldwork, and performed phenotype observation. JW wrote the manuscript. DGA supervised and revised the manuscript. YLJ also revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Diaoguo An.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Communicated by Thomas Miedaner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 302 KB)

Supplementary file2 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Han, G., Liu, H. et al. Development of novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance and physical mapping of the resistance gene PmW6RS. Theor Appl Genet 136, 179 (2023). https://doi.org/10.1007/s00122-023-04433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04433-8

Navigation