Skip to main content

Advertisement

Log in

Breeding for sustainable oilseed crop yield and quality in a changing climate

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

As the effects of climate change continue to alter crop-growing conditions year-to-year on both prime and marginal agricultural landscapes, we must consider the effects not only on yield but also on quality. This is particularly true for oilseed crops. In this review, we explore the importance of oilseeds in general and the specific uses of major oilseed crops including soybean, sunflower, canola, peanut, and cottonseed. We review the physiology of seed oil production, from the perspective of the plant’s adaptation to environmental changes. Of particular importance is the role of temperature and water availability on oil synthesis. We then discuss how this influences genetic variation, phenotype variability due to environment, and the interaction of genetics and environment to affect composition and yield of vegetable oils. The ability to predict these effects using genomics and bioinformatics is an important new frontier for breeders to maximize stability of a desired fatty acid composition for their crop over increasingly extreme agricultural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdelraheem A, Esmaeili N, O’Connell M, Zhang J (2019) Progress and perspective on drought and salt stress tolerance in cotton. Ind Crops Prod 130:118–129

    CAS  Google Scholar 

  • Abiodun, O. A. (2017). The role of oilseed crops in human diet and industrial use. Oilseed crops: yield and adaptations under environmental stress, 249–263

  • Aboudrare A, Debaeke P, Bouaziz A, Chekli H (2006) Effects of soil tillage and fallow management on soil water storage and sunflower production in a semi-arid Mediterranean climate. Agric Water Manag 83(3):183–196

    Google Scholar 

  • Ahmad, P., & Prasad, M. N. V. (Eds.). (2011). Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science & Business Media

  • Akerele OA, Cheema SK (2016) A balance of omega-3 and omega-6 polyunsaturated fatty acids is important in pregnancy. J Nutr Intermed Metab 5:23–33

    Google Scholar 

  • Akram NA, Shafiq F, Ashraf M (2018) Peanut (Arachis hypogaea L.): a prospective legume crop to offer multiple health benefits under changing climate. Compr Rev Food Sci Food Saf 17(5):1325–1338

    PubMed  Google Scholar 

  • Aksouh-Harradj NM, Campbell LC, Mailer RJ (2006) Canola response to high and moderately high temperature stresses during seed maturation. Can J Plant Sci 86(4):967–980

    CAS  Google Scholar 

  • Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Technol 53(1):31–41

    CAS  PubMed  Google Scholar 

  • Attia Z, Domec JC, Oren R, Way DA, Moshelion M (2015) Growth and physiological responses of isohydric and anisohydric poplars to drought. J Exp Bot 66(14):4373–4381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49(3):235–249

    CAS  PubMed  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. Mol dissection complex traits 1998:145–162

    Google Scholar 

  • Becker HC, Leon J (1988) Stability analysis in plant breeding. Plant Breed 101(1):1–23

    Google Scholar 

  • Bob BB, Wilhelm G, Russell LJ (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, Maryland, pp 1159–1165

    Google Scholar 

  • Boydak E, Alpaslan M, Hayta M, GERCek, S. I. N. A. N., & Simsek, M. (2002) Seed composition of soybeans grown in the Harran region of Turkey as affected by row spacing and irrigation. J agric food chem 50(16):4718–4720

    CAS  PubMed  Google Scholar 

  • Calder PC, Yaqoob P (2009) Omega-3 polyunsaturated fatty acids and human health outcomes. BioFactors 35(3):266–272

    CAS  PubMed  Google Scholar 

  • Calder PC (2015) Functional roles of fatty acids and their effects on human health. J Parenter Enter Nut 39:18S-32S

    Google Scholar 

  • Calder PC (2017) Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 45(5):1105–1115

    CAS  PubMed  Google Scholar 

  • Canvin DT (1965) The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot 43(1):63–69

    CAS  Google Scholar 

  • Cao YZ, Huang AH (1986) Diacylglycerol acyltransferase in maturing oil seeds of maize and other species. Plant Physiol 82(3):813–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YZ, Huang AH (1987) Acyl coenzyme A preference of diacylglycerol acyltransferase from the maturing seeds of Cuphea, maize, rapeseed, and canola. Plant Physiol 84(3):762–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrera C, Martínez MJ, Dardanelli J, Balzarini M (2009) Water deficit effect on the relationship between temperature during the seed fill period and soybean seed oil and protein concentrations. Crop Sci 49(3):990–998

    Google Scholar 

  • Carver BF, Burton JW, Carter TE Jr, Wilson RF (1986) Response to Environmental Variation of Soybean Lines selected for Altered Unsaturated Fatty Acid Composition. Crop Sci 26(6):1176–1181

    CAS  Google Scholar 

  • Caskey C, Gallup WD (1931) Changes in the sugar, oil and gossypol content of the developing cotton boll. J agric Res 42(10):671–673

    CAS  Google Scholar 

  • Chaiyadee S, Jogloy SP, Songsri P, Singkham N, Vorasoot N, Sawatsitang P, Patanothai A (2013) Soil moisture affects fatty acids and oil quality parameters in peanut. Int J Plant Prod 7(1):81–96

    Google Scholar 

  • Champolivier L, Merrien A (1996) Effects of water stress applied at different growth stages to Brassica napus L var oleifera on yield yield components and seed quality. Eur J Agron 5(3–4):153–160

    Google Scholar 

  • Coulston AM (1999) The role of dietary fats in plant-based diets. Am J clin nut 70(3):512s–515s

    CAS  Google Scholar 

  • Cronan Jr, J. E., Li, W. B., Coleman, R., Narasimhan, M., de Mendoza, D., Fisher, M., ... & Slabas, A. R. (2010). 3.5 Quantitative real-time RT-PCR. Genomics and Applied Biology 1(2)

  • Damude HG, Kinney AJ (2007) Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids 42(3):179

    CAS  PubMed  Google Scholar 

  • Dalal A, Attia Z, Moshelion M (2017) To produce or to survive: how plastic is your crop stress physiology? Front plant sci 8:2067

    PubMed  PubMed Central  Google Scholar 

  • Darr L, Cunicelli M, Bhandari H, Bilyeu K, Chen F, Hewezi T, Zengli L, Sams C, Pantalone V (2020) Field performance of high oleic soybeans with mutant FAD2-1A and FAD2-1B genes in Tennessee. J Am Oil Chem Soc 97:49–56

    CAS  Google Scholar 

  • Debaeke P, Bedoussac L, Bonnet C, Bret-Mestries E, Seassau C, Gavaland A, Justes E (2017) Sunflower crop: environmental-friendly and agroecological. OCL 24(3):D304

    Google Scholar 

  • DeBonte L, Iassonova D, Liu L, Loh W (2012) Commercialization of high oleic canola oils. Lipid Technol 24(8):175–177

    CAS  Google Scholar 

  • Dikšaitytė A, Viršilė A, Žaltauskaitė J, Januškaitienė I, Juozapaitienė G (2019) Growth and photosynthetic responses in Brassica napus differ during stress and recovery periods when exposed to combined heat, drought and elevated CO2. Plant Physiol Biochem 142:59–72

    PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PV, Boyle DL, Schapaugh WT (2013) Soybean pollen anatomy, viability and pod set under high temperature stress. J Agron Crop Sci 199(3):171–177

    Google Scholar 

  • Dornbos DL, Mullen RE (1992) Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J Am Oil Chem Soc 69(3):228–231

    CAS  Google Scholar 

  • Dowd MK, Boykin DL, Meredith Jr WR, Campbell BT, Bourland FM, Gannaway JR, Zhang J (2010). Fatty acid profiles of cottonseed genotypes from the national cotton variety trials

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607

    CAS  PubMed  Google Scholar 

  • Dwivedi SL, Nigam SN, Jambunathan R, Sahrawat KL, Nagabhushanam GVS, Raghunath K (1993) Effect of genotypes and environments on oil content and oil quality parameters and their correlation in peanut (Arachis hypogaea L.). Peanut Sci 20(2):84–89

    CAS  Google Scholar 

  • El Sabagh A, Hossain A, Barutcular C, Gormus O, Ahmad Z, Hussain S, Akdeniz H (2019) Effects of drought stress on the quality of major oilseed crops: implications and possible mitigation strategies–a review. Appl Ecol Environ Res 17(2):4019–4043

    Google Scholar 

  • Elferjani R, Soolanayakanahally R (2018) Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Front plant sci 9:1224

    PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Front plant sci 8:1147

    PubMed  PubMed Central  Google Scholar 

  • Farwer SR, Der Boer BC, Haddeman E, Kivits GA, Wiersma A, Danse BH (1994) The vitamin E nutritional status of rats fed on diets high in fish oil, linseed oil or sunflower seed oil. Br J Nutr 72(1):127–145

    CAS  PubMed  Google Scholar 

  • Falcone DL, Ogas JP, Somerville CR (2004) Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol 4(1):17

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Moya V, Martínez-Force E, Garcés R (2005) Oils from improved high stearic acid sunflower seeds. J Agric Food Chem 53(13):5326–5330

    PubMed  Google Scholar 

  • Flagella Z, Rotunno T, Tarantino E, Di Caterina R, De Caro A (2002) Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L) hybrids in relation to the sowing date and the water regime. Eur j Agron 17(3):221–230

    CAS  Google Scholar 

  • Food and Agriculture Organization. (2009). How to Feed the World 2050. High-Level Expert Forum

  • Food and Agriculture Organization of the United Nations. (2017). FAO cereal supply and demand brief

  • Fujiwara T, Nambara E, Yamagishi K, Goto DB, Naito S (2002) Storage proteins. The arabidopsis book, 1, e0020. https://doi.org/https://doi.org/10.1199/tab.0020

  • Gao J, Hao X, Thelen KD, Robertson GP (2009) Agronomic management system and precipitation effects on soybean oil and fatty acid profiles. Crop Sci 49(3):1049–1057

    CAS  Google Scholar 

  • Gibson L, Benson G (2005) Origin, history, and uses of soybean (Glycine max). Iowa State University, Department of Agronomy, March

    Google Scholar 

  • Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook with CD-ROM. CRC Press, Florida

    Google Scholar 

  • Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1301(1–2): 7–56

  • Hashim IB, Koehler PE, Eitenmiller RR, Kvien CK (1993) Fatty acid composition and tocopherol content of drought stressed Florunner peanuts. Peanut Science 20(1):21–24

    CAS  Google Scholar 

  • Hassan A, Ijaz M, Sattar A, Sher A, Rasheed I, Saleem MZ, Hussain I (2020) Abiotic stress tolerance in cotton. In: Mahmood-ur-Rahman A (ed) Cotton Research. IntechOpen, London

    Google Scholar 

  • Hellmann J, Zhang MJ, Tang Y, Rane M, Bhatnagar A, Spite M (2013) Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production. J Immunol 191(3):1383–1392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, et al. (2018) Impacts of 1.5 °C global warming on natural and human systems. In: MassonDelmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (Eds). In: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press

  • Hoshi T, Wissuwa B, Tian Y, Tajima N, Xu R, Bauer M, Hou S (2013) Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proc Natl Acad Sci 110(12):4816–4821

    CAS  PubMed  Google Scholar 

  • Hulke BS, Kleingartner LW (2014) Sunflower p. 433–457. In: Smith S, Diers B, Specht J, Carver B (eds) Yield Gains in Major US Field Crops: CSSA Special Publication 33. Madison, WI

    Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194(3):193–199

    CAS  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agric Water Manag 201:152–166

    Google Scholar 

  • Hymowitz T, Shurtleff WR (2005) Debunking soybean myths and legends in the historical and popular literature. Crop Sci 45(2):473–476

    Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci 103(45):16666–16671

    CAS  PubMed  Google Scholar 

  • Im YJ, Han O, Chung GC, Cho BH (2002) Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cells 13(2):264–271

    CAS  PubMed  Google Scholar 

  • Jaradat AA (2016) Breeding Oilseed Crops for Climate Change. Academic Press, Cambrigde, In Breeding oilseed crops for sustainable production

    Google Scholar 

  • Jaworski JG, Clough RC, Barnum SR (1989) A cerulenin insensitive short chain 3-ketoacyl-acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiol 90(1):41–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Caldwell CD, Falk KC (2014) Camelina seed quality in response to applied nitrogen, genotype and environment. Can J Plant Sci 94(5):971–980

    CAS  Google Scholar 

  • Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T (2008) Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot 59(8):2043–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly G, Egbaria A, Khamaisi B, Lugassi N, Attia Z, Moshelion M, Granot D (2019) Guard-cell hexokinase increases water-use efficiency under normal and drought conditions. Frontiers in Plant Science 10:1499

    PubMed  PubMed Central  Google Scholar 

  • Kinney AJ (1996) Development of genetically engineered soybean oils for food applications. J Food Lipids 3(4):273–292

    CAS  Google Scholar 

  • Kris-Etherton, P. M., & Krauss, R. M. (2020). Public health guidelines should recommend reducing saturated fat consumption as much as possible: YES. The American Journal of Clinical Nutrition

  • Kutcher HR, Warland JS, Brandt SA (2010) Temperature and precipitation effects on canola yields in Saskatchewan. Canada Agric Forest Meteorol 150(2):161–165

    Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Func Genom 4(4):343–354

    CAS  Google Scholar 

  • Levin DA (1974) The oil content of seeds: an ecological perspective. Am Nat 108(960):193–206

    Google Scholar 

  • Lewis, J. (2011). Analysis of the Performance of Peanut Fame in a Single Cylinder Idi Engine and Investigations of Neat Methyl Ester Influence on Fuel Quality

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23(3):184–186

    CAS  PubMed  Google Scholar 

  • List, G. R. (2016). Oilseed Composition and Modification for Health and Nutrition. In Functional Dietary Lipids. Woodhead Publishing, Cambridge

  • Liu H, Liu YJ, Yang MF, Shen SH (2009) A comparative analysis of embryo and endosperm proteome from seeds of Jatropha curcas. J Integr Plant Biol 51(9):850–857

    CAS  PubMed  Google Scholar 

  • Lyons, J. M., & Asmundson, C. M. (1965). Solidification of unsaturated/saturated fatty acid mixtures and its relationship to chilling sensitivity in plants. Journal of the American Oil Chemists' Society, 42(12Part2), 1056–1058

  • Maggio A, Bressan RA, Zhao Y, Park J, Yun DJ (2018) It’s hard to avoid avoidance: Uncoupling the evolutionary connection between plant growth, productivity and stress “tolerance.” Int J Mol Sci 19(11):3671

    PubMed Central  Google Scholar 

  • Matteucci M, D’angeli S, Errico S, Lamanna R, Perrotta G, Altamura MM (2011) Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L genotypes with different cold hardiness. J Exp Botany 62(10):3403–3420

    CAS  Google Scholar 

  • Mayo Clinic Healthy Lifestyle Nutrition and healthy eating. https://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/expert-answers/fat-grams/faq-20058496#:~:text=The%202015%2D2020%20Dietary%20Guidelines,or%20less%20of%20daily%20calories. Published May 3, 2019. Accessed September 18, 2020

  • Moser BR (2012) Biodiesel from alternative oilseed feedstocks: camelina and field pennycress. Biofuels 3(2):193–209

    CAS  Google Scholar 

  • Moshelion M, Halperin O, Wallach R, Oren RAM, Way DA (2015) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant, Cell Environ 38(9):1785–1793

    CAS  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115(3):875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ (1991) Designer oilseed crops. Genetic engineering of new oilseed crops for edible and non-edible applications, Agrofood Industry hi-tech

    Google Scholar 

  • Newman YC, Sollenberger LE, Boote KJ, Allen LH Jr, Vu JCV, Hall MB (2005) Temperature and carbon dioxide effects on nutritive value of rhizoma peanut herbage. Crop Sci 45(1):316–321

    Google Scholar 

  • Nikiforidis CV, Kiosseoglou V, Scholten E (2013) Oil bodies: an insight on their microstructure—maize germ vs sunflower seed. Food Res Int 52(1):136–141

    CAS  Google Scholar 

  • Nikolau BJ, Ohlrogge JB, Wurtele ES (2003) Plant biotin-containing carboxylases. Arch Biochem Biophys 414(2):211–222

    CAS  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7(957):10–1105

    Google Scholar 

  • Oliva ML, Shannon JG, Sleper DA, Ellersieck MR, Cardinal AJ, Paris RL, Lee JD (2006) Stability of fatty acid profile in soybean genotypes with modified seed oil composition. Crop Sci 46(5):2069–2075

    CAS  Google Scholar 

  • Pace PF, Cralle HT, El-Halawany SH, Cothren JT, Senseman SA (1999) Drought-induced changes in shoot and root growth of young cotton plants. J Cotton Sci 3(4):183–187

    Google Scholar 

  • Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Nguyen HT (2017) Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor Appl Genet 130(10):1975–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pekcan V, Evci G, Yilmaz MI, Nalcaiyi ASB, Erdal SÇ, Cicek N, Kaya Y (2015) Drought effects on yield traits of some sunflower inbred lines. Poljoprivreda i Sumarstvo 61(4):101

    Google Scholar 

  • Penna JCV, Verhalen LM, Kirkham MB, McNew RW (1998) Screening cotton genotypes for seedling drought tolerance. Genet mol biol 21(4):545–549

    Google Scholar 

  • Piao XM, Choi SY, Jang YS, So YS, Chung JW, Lee SY, Kim HS (2014) Effect of genotype, growing year and planting date on agronomic traits and chemical composition in sunflower (Helianthus annuus L) germplasm. Plant breed biotechnol 2(1):35–47

    Google Scholar 

  • Piper EL, Boote KI (1999) Temperature and cultivar effects on soybean seed oil and protein concentrations. J Am Oil Chem Soc 76:1233–1241. https://doi.org/10.1007/s11746-999-0099-y

    Article  CAS  Google Scholar 

  • Psota TL, Gebauer SK, Kris-Etherton P (2006) Dietary omega-3 fatty acid intake and cardiovascular risk. Am J cardiol 98(4):3–18

    Google Scholar 

  • Primomo VS, Falk DE, Ablett GR, Tanner JW, Rajcan I (2002) Genotype × environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci 42:37–44. https://doi.org/10.2135/cropsci2002.3700

    Article  CAS  PubMed  Google Scholar 

  • Purdy RH (1986) High oleic sunflower: physical and chemical characteristics. J Am Oil Chem Soc 63(8):1062–1066

    CAS  Google Scholar 

  • Raß M, Schein C, Matthäus B (2008) Virgin sunflower oil. Eur J Lipid Sci Technol 110(7):618–624

    Google Scholar 

  • Rahman H, Harwood J, Weselake R (2013) Increasing seed oil content in Brassica species through breeding and biotechnology. Lipid Technol 25(8):182–185

    Google Scholar 

  • Rao SS, Hildebrand D (2009) Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids 44(10):945–951

    CAS  PubMed  Google Scholar 

  • Rashid U, Anwar F, Knothe G (2009) Evaluation of biodiesel obtained from cottonseed oil. Fuel Process Technol 90(9):1157–1163

    CAS  Google Scholar 

  • Ray CL, Shipe ER, Bridges WC (2008) Planting date influence on soybean agronomic traits and seed composition in modified fatty acid breeding lines. Crop Sci 48(1):181–188

    Google Scholar 

  • Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PloS one 14(5):e0217148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymer PL (2002) Canola: an emerging oilseed crop. Trends new crops new uses 1:122–126

    Google Scholar 

  • Raymer PL, Auld DL, Mahler KA (1990) Agronomy of canola in the United States. In Canola and Rapeseed, Springer, Boston

    Google Scholar 

  • Rathore KS, Pandeya D, Campbell LM, Wedegaertner TC, Puckhaber L, Stipanovic RD, Hake K (2020) Ultra-Low Gossypol Cottonseed: Selective Gene Silencing Opens Up a Vast Resource of Plant-Based Protein to Improve Human Nutrition. Critical Reviews in Plant Sciences, 1–29

  • Rondanini D, Savin R, Hall AJ (2003) Dynamics of fruit growth and oil quality of sunflower (Helianthus annuus L.) exposed to brief intervals of high temperature during grain filling. Field Crops Res 83(1):79–90

    Google Scholar 

  • Rose IA (1988) Effects of moisture stress on the oil and protein components of soybean seeds. Aust J Agric Res 39(2):163–170

    CAS  Google Scholar 

  • Ruiz-Núñez B, Dijck-Brouwer DJ, Muskiet FA (2016) The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J Nut Biochem 36:1–20

    Google Scholar 

  • Sade N, Shatil-Cohen A, Attia Z, Maurel C, Boursiac Y, Kelly G, Moshelion M (2014) The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics. Plant Physiol 166(3):1609–1620

    PubMed  PubMed Central  Google Scholar 

  • Saini RK, Keum YS (2018) Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci 203:255–267

    CAS  PubMed  Google Scholar 

  • Salas JJ, Martínez-Force E, Garcés R (2006) Accumulation of phospholipids and glycolipids in seed kernels of different sunflower mutants (Helianthus annuus). J Am Oil Chem Soc 83(6):539–545

    CAS  Google Scholar 

  • Santos Hansel DS, Schwalbert RA, Shoup DE, Holshouser DL, Parvej R, Prasad PV, Ciampitti IA (2019) A Review of Soybean Yield when Double-Cropped after Wheat. Agron J 111(2):677–685

    Google Scholar 

  • Schulte LR, Ballard T, Samarakoon T, Yao L, Vadlani P, Staggenborg S, Rezac M (2013) Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops. Ind Crops Prod 51:212–219

    Google Scholar 

  • Schuppert GF, Bushman BS, Kasschau KD, Slabaugh MB, Carrington JC, Knapp SJ (2005) The FAD2–1 gene is tandemly duplicated and silenced by RNA interference in high oleic acid sunflower. In 13 th Plant and Animal Genome Conference, San Diego, CA, USA

  • Seiler G, Gulya Jr T (2016) Sunflower. Book Chapter, 247–253

  • Serrano-Vega MJ, Martínez-Force E, Garcés R (2005) Lipid characterization of seed oils from high-palmitic, low-palmitoleic, and very high-stearic acid sunflower lines. Lipids 40(4):369–374

    CAS  PubMed  Google Scholar 

  • Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18(9):2294–2313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer SD, Zou J, Weselake RJ (2016) Abiotic factors influence plant storage lipid accumulation and composition. Plant Sci 243:1–9

    CAS  PubMed  Google Scholar 

  • Škorić D (1992) Achievements and future directions of sunflower breeding. Field Crops Res 30(3–4):231–270

    Google Scholar 

  • Song W, Yang R, Wu T, Wu C, Sun S, Zhang S, Han T (2016) Analyzing the effects of climate factors on soybean protein, oil contents, and composition by extensive and high-density sampling in China. J Agric Food Chem 64(20):4121–4130

    CAS  PubMed  Google Scholar 

  • Song Y, Wang XD, Rose RJ (2017) Oil body biogenesis and biotechnology in legume seeds. Plant Cell Rep 36(10):1519–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sovero M (1993) Rapeseed, a new oilseed crop for the United States. New crops, 302–307

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Midgley PM (2013) IPCC, 2013. Climate change

  • Tahir MHN, Imran MUHAMMAD, Hussain MK (2002) Evaluation of sunflower (Helianthus annuus L.) inbred lines for drought tolerance. Int J Agric Biol 3:398–400

    Google Scholar 

  • Tang GQ, Novitzky WP, Carol Griffin H, Huber SC, Dewey RE (2005) Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44(3):433–446

    CAS  PubMed  Google Scholar 

  • Tremolieres A (1982) Unsaturated fatty acids in maturing seeds of sunflower and rape: regulation by temperature and light intensity

  • Turner NC, Hearn AB, Begg JE, Constable GA (1986) Cotton (Gossypium hirsutum L.): physiological and morphological responses to water deficits and their relationship to yield. Field Crops Res 14:153–170

    Google Scholar 

  • Ullah F, Bano A, Nosheen A (2012) Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pak J Bot 44(6):1873–1880

    CAS  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotech Lett 30(6):967–977

    CAS  Google Scholar 

  • USDA (2020) Food Data Central database. Available at: https://ndb.nal.usda.gov//index.html (accessed 14 September 2020)

  • Ursin VM (2003) Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J nut 133(12):4271–4274

    CAS  Google Scholar 

  • Vicente-Carbajosa J, Carbonero P (2005) Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol 49(5–6):645–651

    CAS  PubMed  Google Scholar 

  • Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Biol 52(1):335–361

    CAS  Google Scholar 

  • Voss-Fels KP, Stahl A, Hickey LT (2019) Q&A: Modern crop breeding for future food security. BMC Biol 17(1):1–7

    Google Scholar 

  • Wample RL, Thornton RK (1984) Differences in the response of sunflower (Helianthus annuus) subjected to flooding and drought stress. Physiol Plant 61(4):611–616

    Google Scholar 

  • Warschefsky E, Penmetsa RV, Cook DR, Von Wettberg EJ (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101(10):1791–1800

    PubMed  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7(5):217–224

    CAS  PubMed  Google Scholar 

  • Wendel M, Heller AR (2009) Anticancer actions of omega-3 fatty acids-current state and future perspectives. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 9(4), 457–470

  • Wijewardana C, Reddy KR, Bellaloui N (2019) Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem 278:92–100

    CAS  PubMed  Google Scholar 

  • Williams CM (2000, May) Dietary fatty acids and human health. In Annales de zootechnie (Vol. 49, No. 3, pp. 165–180). EDP Sciences

  • Wrigley CW, Corke H, Seetharaman K, Faubion J (eds) (2015) Encyclopedia of food grains. Academic Press, Florida

    Google Scholar 

  • Yan Z (1990, April) Overview of rapeseed production and research in China. In Proceedings of the International Canola Conference Potash and Phosphate Institute, Atlanta, Georgia (pp. 29–35)

  • Yu M, Liu F, Zhu W, Sun M, Liu J, Li X (2015) New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages. Funct Integr Genomics 15(6):707–716

    CAS  PubMed  Google Scholar 

  • Zhang JT, Zhu JQ, Zhu Q, Liu H, Gao XS, Zhang HX (2009) Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 390(3):469–474

    CAS  PubMed  Google Scholar 

  • Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7(1):e30355

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was also supported by BARD, the USA—Israel Binational Agricultural Research and Development Fund, Vaadia-BARD Postdoctoral Fellowship Award No.FI-577-2018. The authors declare no conflict of interest. Many thanks for the personal communications and thoughtful insights from Lori Hinze, USDA-ARS College Station, Texas; Steven Hague, Texas A&M University; and Kyle Johnson, Bayer CropScience.

Author information

Authors and Affiliations

Authors

Contributions

ZA, CSP, and BSH wrote the majority of the manuscript. Important insights were written by NCK and SR on the subjects of genomics and evolutionary biology. All of the authors assisted in revision of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Brent S. Hulke.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Prasanna M. Boddupalli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, Z., Pogoda, C.S., Reinert, S. et al. Breeding for sustainable oilseed crop yield and quality in a changing climate. Theor Appl Genet 134, 1817–1827 (2021). https://doi.org/10.1007/s00122-021-03770-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03770-w

Navigation