Skip to main content
Log in

Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Resistant rapeseed lines pyramided with multiple resistant QTLs derived from Brassica oleracea were developed via a hexaploidy strategy.

Abstract

Rapeseed (Brassica napus L.) suffers heavily from Sclerotinia stem rot, but the breeding of Sclerotinia-resistant rapeseed cultivar has been unsuccessful. During the study, interspecific hexaploids were generated between rapeseed variety ‘Zhongshuang 9’ and a wild B. oleracea which was highly resistant to S. sclerotiorum, followed by backcrossing with Zhongshuang 9 and successive selfing. By molecular marker-assisted selection, three major resistant QTLs were transferred and pyramided from B. oleracea into two BC1F8 lines which exhibited ~ 35% higher resistance level than Zhongshuang 9 and produced good seed yield and seed quality. It is the first report on successful development of Sclerotinia-resistant rapeseed lines by introducing multiple resistant loci from wild B. oleracea. This study revealed the effectiveness of pyramiding multiple QTLs in improving Sclerotinia resistance in rapeseed and provided a novel breeding strategy on utilization of B. oleracea in rapeseed improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad H, Hasnain S, Khan A (2002) Evolution of genomes and genome relationship among the rapeseed and mustard. Biotechnology 1:78–87

    Article  Google Scholar 

  • Bolton MD, Thomma BP, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7(1):1

    Article  CAS  Google Scholar 

  • China MoAotPsRo (2011) Rules for investigation and forecast technology of rape sclerotiniose [Sclerotinia sclerotiorium (Lib.) de Bary]. Standards Press of China

  • Choudhary BR, Joshi P, Singh K (2000) Synthesis, morphology and cytogenetics of Raphanofortii (TTRR, 2n = 38): a new amphidiploid of hybrid Brassica tournefortii (TT, 2n = 20) × Raphanus caudatus (RR, 2n = 18). Theor Appl Genet 101:990–999

    Article  Google Scholar 

  • Chrungu B, Verma N, Mohanty A, Pradhan A, Shivanna KR (1999) Production and characterization of interspecific hybrids between Brassica maurorum and crop brassicas. Theor Appl Genet 98:608–613

    Article  Google Scholar 

  • del Río L, Bradley C, Henson R, Endres G, Hanson B, Mckay K, Halvorson M, Porter P, Le Gare D, Lamey H (2007) Impact of Sclerotinia stem rot on yield of canola. Plant Dis 91:191–194

    Article  Google Scholar 

  • Ding Y, Mei J, Li Q, Liu Y, Wan H, Wang L, Becker HC, Wei Q (2013) Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genet Resour Crop Evol 60:1615–1619

    Article  Google Scholar 

  • Ding Y, Mei J, Liu Y, Wang L, Li Y, Wan H, Li J, Qian W (2015) Transfer of Sclerotinia stem rot resistance from wild Brassica oleracea into B. rapa. Mol Breed 35:225

    Article  Google Scholar 

  • Ding Y, Mei J, Wu Q, Xiong Z, Li Y, Shao C, Wang L, Qian W (2019) Synchronous improvement of subgenomes in allopolyploid: a case of Sclerotinia resistance improvement in Brassica napus. Mol Breed 39:10

    Article  Google Scholar 

  • Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IAP, Pires JC, Chalhoub B, King GJ, Snowdon R, Batley J, Edwards D (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16:1265–1274

    Article  CAS  Google Scholar 

  • Koch S, Dunker S, Kleinhenz B, Rohrig M, von Tiedemann A (2007) Crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopathology 97:1186–1194

    Article  CAS  Google Scholar 

  • Li GQ, Huang HC, Miao HJ, Erickson RS, Jiang DH, Xiao YN (2006) Biological control of Sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur J Plant Pathol 114:345–355

    Article  Google Scholar 

  • Liang X, Rollins A (2018) Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology 108(10):1128–1140

    Article  CAS  Google Scholar 

  • Mei J, Qian L, Disi JO, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W (2011) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica crops with emphasis on B. oleracea. Euphytica 177:393–400

    Article  Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO, Li J, Liu L, Liu S, McKay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556

    Article  CAS  Google Scholar 

  • Mei J, Liu Y, Wei D, Wittkop B, Ding Y, Li Q, Li J, Wan H, Li Z, Ge X, Frauen M, Snowdon RJ, Qian W, Friedt W (2015) Transfer of Sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet 128:639–644

    Article  CAS  Google Scholar 

  • Nagaharu U (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar bode of fertilization. J Japan Bot 7:389–452

    Google Scholar 

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  CAS  Google Scholar 

  • SAS Institute (1992) SAS technical report. SAS statistics software: changes and enhancements. Release 6.07

  • Tel-Zur N, Abbo S, Mizrahi Y (2005) Cytogenetics of semi-fertile triploid and aneuploid intergeneric vine cacti hybrids. J Hered 96:124–131

    Article  CAS  Google Scholar 

  • Wei L, Jian H, Lu K, Filardo F, Li J (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14:1368–1380

    Article  CAS  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y, Zhang J (2013) Identification of QTLs for resistance to Sclerotinia stem rot and as a candidate gene of the major resistant QTL SRC6 in Brassica napus. Plos One 8:67740

    Article  Google Scholar 

  • Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai G, Zhang C, Fan C, Wang Y, Zhou Y (2016) Genome-wide association study identifies new loci for resistance to Sclerotinia stem rot in Brassica napus. Front Plant Sci 7:1418

    PubMed  PubMed Central  Google Scholar 

  • Wu J, Lin L, Xu M, Chen P, Liu D, Sun Q, Ran L, Wang Y (2018) Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. BMC Genom 19(1):586

    Article  Google Scholar 

  • Yin X, Yi B, Chen W, Zhang W, Tu J, Fernando W, Fu T (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25–35

    Article  CAS  Google Scholar 

  • Zhang J, Qi C, Pu H, Chen S, Chen F (2011) Genetic map construction and Sclerotinia resistance QTLs identification in rapeseed (Brassica napus L.). 13th International rapeseed congress, Prague, Czech, pp 673–676

  • Zhang F, Huang J, Tang M, Chen X, Liu Y, Tong C, Yu J, Sadia T, Dong C, Liu L, Tang B, Chen J, Liu S (2019) Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus. J Integr Plant Biol 61:75–88

    Article  Google Scholar 

  • Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106:759–764

    Article  Google Scholar 

  • Zhao J, Udall J, Quijada PA, Grau CR, Meng J, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Article  CAS  Google Scholar 

  • Zou J, Hu D, Mason AS, Shen X, Wang X, Wang N, Grandke F, Wang M, Chang S, Snowdon RJ, Meng J (2018) Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnol J 16:507–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key R&D Program of China (2018YFD0100500 and 2018YFE0108000), the National Nature Science Foundation of China (31971978), the Project of Chongqing Science and Technology Commission (cstc2019jcyj-zdxm0012), the Fundamental Research Funds for the Central Universities (XDJK2018AA004) and Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjAX0107).

Author information

Authors and Affiliations

Authors

Contributions

JM and CS directed the project and wrote the manuscript, RY and YF conducted the resistance evaluation, YG and YD performed the marker-assisted selection and the field work, and JL and WQ designed the experiment.

Corresponding author

Correspondence to Wei Qian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, J., Shao, C., Yang, R. et al. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor Appl Genet 133, 1313–1319 (2020). https://doi.org/10.1007/s00122-020-03552-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03552-w

Navigation