Skip to main content
Log in

Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Common wheat landrace Kaixian-luohanmai carries a gene(s) that promotes homoeologous chromosome pairing. A major QTL responsible for this effect was mapped to chromosome arm 3AL.

Abstract

Polyhaploid hybrids of a Chinese common wheat landrace Kaixian-luohanmai (KL) and related species show increased levels of chromosome pairing. Over 90% of that pairing is between homoeologous arms of wheat chromosomes, with a very strong preference for pairing between homoeologs from genomes A and D. Wheat–rye pairing was also observed at low frequency. Two mapping populations were created from the hybrids of KL with two wheat genotypes top crossed to rye. Mean chiasmata numbers per plant were used as phenotypic data. Wheat 660 K and 15 K SNP arrays, DArT markers and SSR markers were used for genotyping of the top-cross ABDR hybrids. One major QTL, named QPh.sicau-3A, for increased homoeologous pairing was detected on chromosome arm 3AL, and it was responsible for ca. 16% of the total variation. This QTL was located in the interval 696–725 Mb in the Chinese Spring reference genome. SNP markers closely linked with QPh.sicau-3A were converted to KASP markers and validated for marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872

    Article  CAS  PubMed  Google Scholar 

  • Alonso LC, Kimber G (1981) The analysis of meiosis in hybrids. II. Triploid hybrids. Can J Genet Cytol 23:221–234

    Article  Google Scholar 

  • Bhullar R, Nagarajan R, Bennypaul H, Sidhu GK, Sidhu G, Rustgi S, Wettestein DV, Gill KS (2014) Silencing of a metaphase I specific gene present in the Ph1 locus results in phenotype similar to that of the Ph1 mutations. Proc Natl Acad Sci USA 111:14187–14192

    Article  CAS  PubMed  Google Scholar 

  • Dover GA, Riley R (1972) Variation at two loci affecting homoeologous meiotic chromosome pairing in Triticum aestivum × Aegilops mutica hybrids. Nat New Biol 235:61–62

    Article  CAS  PubMed  Google Scholar 

  • Driscoll CJ, Quinn CJ (1970) Genetic variation in Triticum affecting the level of chromosome pairing in intergeneric hybrids. Can J Genet Cytol 12:278–282

    Article  Google Scholar 

  • Dvorák J (1977) Effect of rye on homoeologous chromosome pairing in wheat rye hybrids. Can J Genet Cytol 19:549–556

    Article  Google Scholar 

  • Dvorák J, Mcguire PE (1981) Nonstructural chromosome differentiation among wheat cultivars, with special reference to differentiation of chromosomes in related species. Genetics 97:391–414

    PubMed  PubMed Central  Google Scholar 

  • Dvorák J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farqoo S, Iqbal N, Shah TM (1990) Intergeneric hybridization for wheat improvement—III genetic variation in Triticum species affecting homoeologous chromosome pairing. Cereal Res Commun 18:233–237

    Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards K, Bernard M (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Luo JT, Yang M, Zhang LQ, Yan ZH, Yuan ZW, Zheng YL, Zhang HG, Liu DC (2011) Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome 54:959–964

    Article  PubMed  Google Scholar 

  • Jauhar PP, Riera-Lizarazu O, Dewey WG, Gill BS, Crane CF, Bennett JH (1991) Chromosome pairing relationships among the A, B, and D genomes of bread wheat. Theor Appl Genet 82:441–449

    Article  CAS  PubMed  Google Scholar 

  • Kang HY, Zhang HQ, Wang Y, Jiang Y, Yuan HJ, Zhou YH (2008) Comparative analysis of the homoeologous pairing effects of phKL gene in common wheat × Psathyrostachys huashanica Keng. Cereal Res Commun 36:429–440

    Article  CAS  Google Scholar 

  • Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Koo DH, Liu W, Friebe B, Gill BS (2017) Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 126:531–540

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172–175

    Google Scholar 

  • Li H, Deal KR, Luo MC, Ji WQ, Distelfeld A, Dvorák J (2017) Introgression of the Aegilops speltoides Su1-Ph1 suppressor into wheat. Front Plant Sci 8:2163

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CJ, Atkinson MD, Chinoy CN, Devos M, Gale D (1992) Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor Appl Genet 83:305–312

    Article  CAS  PubMed  Google Scholar 

  • Liu DC, Yen C, Yang JL (1999) Evaluation of crosses of bread wheat cv. Kaixianluohanmai with alien species. Acta Agron Sin 25:777–781

    Google Scholar 

  • Liu DC, Zheng YL, Yan ZH, Zhou YH, Wei YM, Lan XJ (2003) Combination of homoeologous pairing gene phKL and Ph2-deficiency in common wheat and its meiotic behaviors in hybrids with alien species. Acta Bot Sin 45:1121–1128

    CAS  Google Scholar 

  • Liu C, Yang ZJ, Feng J, Chi SH (2007) Detection, mapping and application of a new repetitive DNA sequence in Rye (Secale cereale L.) genome. Sci Agric Sin 40:1587–1593

    CAS  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    Article  CAS  Google Scholar 

  • Lukaszewski AJ, Cowger C (2017) Re-engineering of the Pm21 transfer from Haynaldia villosa to bread wheat by induced homoeologous recombination. Crop Sci 57:2590–2594

    Article  CAS  Google Scholar 

  • Luo MC, Yang ZL, Yen C, Yang JL (1992) The cytogenetic investigation on F1 hybrid of Chinese wheat landrace. In: Ren ZL, Peng JH (eds) Exploration of crop breeding. Science and Technology Press, Sichuan, pp 169–176

    Google Scholar 

  • Luo MC, Dubcovsky J, Dvorák J (1996) Recognition of homeology by the wheat Ph1 locus. Genetics 144:1195–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AC, Rey MD, Shaw P, Moore G (2017) Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma 126:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez M, Cuadrado C, Laurie DA, Romero C (2005) Synaptic behaviour of hexaploid wheat haploids with different effectiveness of the diploidizing mechanism. Cytogenet Genome Res 109:210–214

    Article  CAS  PubMed  Google Scholar 

  • Mello-Sampayo T (1971) Genetic regulation of meiotic chromosome pairing by chromosome 3D of triticum aestivum. Nat New Biol 230:22–23

    Article  CAS  PubMed  Google Scholar 

  • Miller T, Reader SM, Shaw PJ, Moore G, Slinkard AE (1998) Towards an understanding of the biological action of the Ph1 locus in wheat. In: Slinkard AE (ed) Proceedings 9th international wheat genetics symposium, vol 1. University of Saskatchewan Extension Press, Saskatoon, pp 17–19

  • Naranjo T, Benavente E (2015) The mode and regulation of chromosome pairing in wheat-alien hybrids (Ph genes, an updated view). In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Springer, Cham, pp 133–162

    Google Scholar 

  • Naranjo T, Fernández-Rueda P (1996) Pairing and recombination between individual chromosomes of wheat and rye in hybrids carrying the phlb mutation. Theor Appl Genet 93:242–248

    Article  CAS  PubMed  Google Scholar 

  • Naranjo T, Roca A, Goicoechea PG, Giraldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882

    Article  Google Scholar 

  • Neelam K, Brown-Guedira G, Huang L (2013) Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol Breed 31:233–237

    Article  CAS  Google Scholar 

  • Okamoto M (1957) Asynaptic effect of chromosome V. Wheat Inform Serv 5:6

    Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martín A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Rey MD, Calderón MC, Prieto P (2015) The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front Plant Sci 6:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  • Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape JW, Moore G (1999) Induction and characterization of Ph1 wheat mutants. Genetics 153:1909–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moran E, Benavente E, Orellana J (2001) Analysis of karyotypic stability of homoeologous-pairing (ph) mutants in allopolyploid wheats. Chromosoma 110:371–377

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Ann Rev Genet 10:31–51

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom 4:12–25

    Article  CAS  Google Scholar 

  • Sun G, Yen C (1994) The ineffectiveness of the phlb gene on chromosome association in the F1 hybrid, Triticum aestivum × Psathyrostachys huashanica. Wheat Inf Serv 79:28–32

    Google Scholar 

  • Sutton T, Whitford R, Baumann U, Dong CM, Able JA, Langridge P (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Li M, Chen L, Wang YY, Ren ZL, Fu SL (2014) New types of wheat chromosomal structural variations in derivatives of wheat–rye hybrids. PLoS One 9:e110282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor J, Butler D (2017) R package ASMap: efficient genetic linkage map construction and diagnosis. J Stat Softw 79:1–29

    Article  Google Scholar 

  • Viera A, Rufas JS, Martínez I, Barbero JL, Ortega S, Suja JA (2009) CDK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. J Cell Sci 122:2149–2159

    Article  CAS  PubMed  Google Scholar 

  • Wingen LU, West C, Waite ML, Collier S, Orford S, Goram R, Yang CY, King J, Allen AM, Burridge A, Edwards KJ, Griffiths S (2017) Wheat landrace genome diversity. Genetics 205:1657–1676

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang ZG, Liu DC, Zheng YL, Zhang LQ, Yan ZH (2005) The effect of phKL gene on homoeologous pairing of wheat-alien hybrids is situated between gene mutants of Ph1 and Ph2. Hereditas (Beijing) 27:935–940 (in Chinese)

    Google Scholar 

  • Zhang LQ, Yen Y, Zheng YL, Liu DC (2007) Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20:159–166

    Article  Google Scholar 

  • Zhang LQ, Liu DC, Zheng YL, Yan ZH, Dai SF, Li YF, Jiang Q, Ye YQ, Yen Y (2010) Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica 172:285–294

    Article  Google Scholar 

  • Zhang L, Luo JT, Hao M, Zhang LQ, Yuan ZW, Yan ZH, Liu YX, Zhang B, Liu BL, Liu CJ, Zhang HG, Zheng YL, Liu DC (2012) Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genet 13:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Cao Y, Zhang MY, Zhu XW, Ren SF, Long YM, Gyawali Y, Chao SM, Xu S, Cai XW (2017) Meiotic homoeologous recombination-based alien gene introgression in the genomics era of wheat. Crop Sci 57:1189–1198

    Article  CAS  Google Scholar 

  • Zhao LB, Ning SZ, Yu JJ, Hao M, Zhang LQ, Yuan ZW, Zheng YL, Liu DC (2016) Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. Breed Sci 66:522–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Li A, Li C, Xia H, Zhao C, Zhang Y, Hou L, Wang X (2017) Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electron J Biotechnol 25:9–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. J. Lukaszewski, University of California, Riverside, and Prof. R. A. McIntosh, University of Sydney, for critical review of the manuscript. This research was supported by the National Natural Science Foundation of China (31601300) and the Chinese Government National Key Research and Development Program (2016YFD0102000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengcai Liu or Ming Hao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares no competing financial interests.

Additional information

Communicated by Steven S. Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Luo, J., Zhang, S. et al. Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace. Theor Appl Genet 132, 2155–2166 (2019). https://doi.org/10.1007/s00122-019-03344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03344-x

Navigation