Skip to main content
Log in

A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A high-density genetic map constructed with a wheat 55 K SNP array was highly consistent with the physical map of this species and it facilitated the identification of a novel major QTL for productive tiller number.

Abstract

Productive tiller number (PTN) plays a key role in wheat grain yield. In this study, a recombinant inbred line population with 199 lines derived from a cross between ‘20828’ and ‘Chuannong16’ was used to construct a high-density genetic map using wheat 55 K single nucleotide polymorphism (SNP) array. The constructed genetic map contains 12,109 SNP markers spanning 3021.04 cM across the 21 wheat chromosomes. The orders of the genetic and physical positions of these markers are generally in agreement, and they also match well with those based on the 660 K SNP array from which the one used in this study was derived. The ratios of SNPs located in each of the wheat deletion bins were similar among the wheat 9 K, 55 K, 90 K, 660 K and 820 K SNP arrays. Based on the constructed maps, a novel major quantitative trait locus QPtn.sau-4B for PTN was detected across multi-environments in a 0.55 cM interval on 4B and it explained 17.23–45.46% of the phenotypic variance. Twenty common genes in the physical interval between the flanking markers were identified on chromosome 4B of ‘Chinese Spring’ and wild emmer. These results indicate that wheat 55 K SNP array could be an ideal tool in primary mapping of target genes and the identification of QPtn.sau-4B laid a foundation for the following fine mapping and cloning work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajmal SU, Zakir N, Mujahid MY et al (2009) Estimation of genetic parameters and character association in wheat. J Agric Biol Sci 24(10):1335–1340

    Google Scholar 

  • An D, Su J, Liu Q, Zhu Y, Tong Y, Li J, Jing R, Li B, Li Z (2006) Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284:73–84

    Article  CAS  Google Scholar 

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  Google Scholar 

  • Badaeva E, Dedkova O, Gay G, Pukhalskyi V, Zelenin AS, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926

    Article  CAS  Google Scholar 

  • Berkman PJ, Lai K, Lorenc MT, Edwards D (2012) Next-generation sequencing applications for wheat crop improvement. Am J Bot 99:365–371

    Article  CAS  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. P Natl Acad Sci US A 110:8057–8062

    Article  CAS  Google Scholar 

  • Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 38:594–597

    Article  CAS  Google Scholar 

  • Cui F, Zhang N, Fan X, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X (2017) Utilization of a Wheat660 K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7:3788

    Article  Google Scholar 

  • Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S (2011) Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet 122:281–289

    Article  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  Google Scholar 

  • Gao F, Wen W, Liu J, Awais R, Yin G, Xia X, Wu X, He Z (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099

    PubMed  PubMed Central  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    Article  CAS  Google Scholar 

  • Hubbard L, Mcsteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  Google Scholar 

  • King J, Grewal S, Yang CY, Hubbart S, Scholefield D, Ashling S, Edwards KJ, Allen AM, Burridge A, Bloor C (2017) A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol J 15:217–226

    Article  CAS  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Lai K, Duran C, Berkman PJ, Lorenc MT, Stiller J, Manoli S, Hayden MJ, Forrest KL, Fleury D, Baumann U (2012) Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol J 10:743–749

    Article  CAS  Google Scholar 

  • Li Z, Peng T, Xie Q, Han S, Tian J (2010) Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations. J Genet 89:409–415

    Article  Google Scholar 

  • Liu S, Zhou R, Dong Y, Li P, Jia J (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  CAS  Google Scholar 

  • Liu G, Jia L, Lu L, Qin D, Zhang J, Guan P, Ni Z, Yao Y, Sun Q, Peng H (2014) Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet 127:2415–2432

    Article  CAS  Google Scholar 

  • Ma J, Stiller J, Wei Y, Zheng YL, Devos KM, Doležel J, Liu C (2014) Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype “Chinese Spring” revealed from chromosome shotgun sequence data. Genome Biol Evol 6:3039–3048

    Article  CAS  Google Scholar 

  • Ma J, Gao S, Stiller J, Jiang Q-T, Lan X-J, Liu Y-X, Pu Z-E, Wang J, Wei Y, Zheng Y-L (2015a) Identification of genes bordering breakpoints of the pericentric inversions on 2B, 4B, and 5A in bread wheat (Triticum aestivum L.). Genome 58:385–390

    Article  CAS  Google Scholar 

  • Ma J, Stiller J, Zheng Z, Wei Y, Zheng YL, Yan G, Doležel J, Liu C (2015b) Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed by gene locations on homoeologous chromosomes. BMC Evol Biol 15:37

    Article  Google Scholar 

  • Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco D, Giancaspro A, Giove S, Panio G, Russo M, Vita P (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    Article  Google Scholar 

  • Mayer KFX, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • Mishra VK, Gupta PK, Arun B, Chand R, Vasistha NK, Vishwakarma MK, Yadav PS, Joshi AK (2015) Introgression of a gene for high grain protein content (Gpc-B1) into two leading cultivars of wheat in Eastern Gangetic Plains of India through marker assisted backcross breeding. Brain Res 439:1–10

    Google Scholar 

  • Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123:1043–1053

    Article  CAS  Google Scholar 

  • Qi W, Tang Y, Zhu W, Li D, Diao C, Xu L, Zeng J, Wang Y, Fan X, Sha L (2016) Molecular cytogenetic characterization of a new wheat-rye 1BL•1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta 244:405–416

    Article  CAS  Google Scholar 

  • Qin P, Lin Y, Hu Y, Liu K, Mao S, Li Z, Wang J, Liu Y, Wei Y, Zheng Y (2016) Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet Mol Biol 39:398–407

    Article  CAS  Google Scholar 

  • Ren T, Hu Y, Tang Y, Li C, Yan B, Ren Z, Tan F, Tang Z, Fu S, Li Z (2018) Utilization of a Wheat55 K SNP array for mapping of major QTL for temporal expression of the tiller number. Front Plant Sci 9:333

    Article  Google Scholar 

  • Smith SE, Kuehl RO, Ray IM, Hui R, Soleri D (1998) Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Sci 38:1125–1129

    Article  Google Scholar 

  • Soto-Cerda BJ, Inostroza-Blancheteau C, Mathías M, Peñaloza E, Zuñiga J, Muñoz G, Rengel Z, Salvo-Garrido H (2014) Marker-assisted breeding for TaALMT1, a major gene conferring aluminium tolerance to wheat. Biol Plant 59:83–91

    Article  Google Scholar 

  • Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G (2016) Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breed 36:1–11

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  Google Scholar 

  • Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q (2017) Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci 8:1379

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  Google Scholar 

  • Weber A, Clark RM, Vaughn L, Sánchezgonzalez JDJ, Yu J, Yandell BS, Bradbury P, Doebley J (2007) Major regulatory genes in maize contribute to standing variation in Teosinte (Zea mays ssp. parviglumis). Genetics 177:2349

    Article  CAS  Google Scholar 

  • Wieser H, Kieffer R, Lelley T (2000) The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agr 80:1640–1647

    Article  CAS  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GLA, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  Google Scholar 

  • Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J (2017) Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet 130:1235–1252

    Article  Google Scholar 

  • Zhou Y, He Z, Zhang G, Xia L, Chen X, Gao Y, Jing Z, Yu G (2004) Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin 30:531–535

    CAS  Google Scholar 

  • Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, Li X, Jia J, Liu X, Li L (2017) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660 K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J 16:818–827

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (31570335 and 31601292), the International Science and Technology Cooperation and Exchanges Program of Science and Technology Department of Sichuan Province (2017HH0076), the Applied Basic Research Programs of Science and Technology Department of Sichuan Province (2016JY0010). We thank the International Wheat Genome Sequencing Consortium (IWGSC) for allowing us to access to the online data. We thanks Yujie Yang for technical support in figure drawing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiujin Lan or Jian Ma.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical standards

All experiments and data analyses were conducted in Sichuan, and the 55 K SNP genotype was done in Beijing, China. All authors have contributed to the study and approved the version for submission. The manuscript has not been submitted to any other journal.

Additional information

Communicated by Peter Langridge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Luo, W., Qin, N. et al. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet 131, 2439–2450 (2018). https://doi.org/10.1007/s00122-018-3164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3164-9

Navigation