Skip to main content
Log in

A comprehensive and precise set of intervarietal substitution lines to identify candidate genes and quantitative trait loci in oilseed rape (Brassica napus L.)

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A set of intervarietal substitution lines were developed in rapeseed by recurrent backcrossing and marker-assisted selection and employed for mapping both qualitative and quantitative traits.

Abstract

Intervarietal substitution lines (ISLs) may be assembled into advanced secondary mapping populations that have remarkable potential for resolving trait loci and mapping candidate genes. To facilitate the identification of important genes in oilseed rape (canola, Brassica napus), we developed 89 ISLs using an elite cultivar ‘Zhongyou 821’ (ZY821) as the recipient and a re-synthesized line ‘No.2127’ as the donor. In the whole process of ISLs development, the target chromosome segments were selected based on the genotypes of 300 microsatellite markers evenly distributed across the genome. Eighty-nine ISLs fixed at BC5F4 were genotyped by sequencing using double digestion to survey the lengths of target substitution segments from the donor parent and the background segments from the recurrent parent. The total length of the substituted chromosome segments was 3030.27 Mb, representing 3.56 × of the Darmor-bzh reference genome sequence (version 4.1). Gene mapping was conducted for two qualitative traits, flower colour and seed-coat colour, and nine quantitative traits including yield- and quality-related traits, with 19 QTLs identified for the latter. Overlapping substitution segments were identified for flower colour and seed-coat colour loci, as well as for QTLs consistently detected in 2 or 3 years. These results demonstrate the value of these ISLs for locus resolution and subsequent cloning, targeted mutation or editing of genes controlling important traits in oilseed rape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Aki T, Shigyo M, Nakano R et al (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790

    Article  CAS  PubMed  Google Scholar 

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG et al (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 1:39–48

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L et al (2012) High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159:1644–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BY, Heneen WK, Jönsson R (1988) Independent inheritance of erucic acid content and flower colour in the C-genome of Brassica napus L. Plant Breed 100:147–149

    Article  Google Scholar 

  • Chen W, Zhang Y, Liu X et al (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Geng J, Rahman M et al (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174

    Article  CAS  Google Scholar 

  • Chen X, Li X, Zhang B et al (2013) Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus. BMC Genom 14:346

    Article  CAS  Google Scholar 

  • Chen J, Wang B, Zhang Y et al (2017) High-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed (Brassica napus L.). Breed Sci 67:296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Xu J, Xia S et al (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Choi SR, Teakle GR, Plaha P et al (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finch-Savage WE, Clay HA, Lynn JR, Morris K (2010) Towards a genetic understanding of seed vigour in small-seeded crops using natural variation in Brassica oleracea. Plant Sci 179:582–589

    Article  CAS  Google Scholar 

  • Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66:245–256

    Article  CAS  PubMed  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R et al (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS ONE 7:e48462

    Article  CAS  Google Scholar 

  • Fu D, Qian W, Zou J, Meng J (2012) Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa. Euphytica 184:151–164

    Article  Google Scholar 

  • Gajardo HA, Wittkop B, Soto-Cerda B et al (2015) Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breed 35:143

    Article  CAS  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    Article  CAS  PubMed  Google Scholar 

  • Holec S, Berger F (2012) Polycomb group complexes mediate developmental transitions in plants. Plant Physiol 158:35–43

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Long Y, Raman H et al (2012) A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell PM, Lydiate DJ, Marshall DF (1996) Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 39:348–358

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen X, Yang Y et al (2011a) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breed 28:585–596

    Article  CAS  Google Scholar 

  • Li M, Sun P, Zhou H et al (2011b) Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice (Oryza sativa L.). Theor Appl Genet 123:411–420

    Article  PubMed  Google Scholar 

  • Li F, Jia HT, Liu L et al (2014a) Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize. Genet Mol Res 13:1707–1716

    Article  CAS  PubMed  Google Scholar 

  • Li N, Shi J, Wang X et al (2014b) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 14:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Chen B, Xu K et al (2016) A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci 242:169–177

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Zhu WY, Zhang YD et al (2011) Detection of QTL for cold tolerance at bud bursting stage using chromosome segment substitution lines in rice (Oryza sativa). Rice Sci 18:71–74

    Article  Google Scholar 

  • Liu Z, Fu T, Tu J, Chen B (2005) Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet 110:303–310

    Article  CAS  Google Scholar 

  • Liu H, Du D, Guo S et al (2016) QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape (Brassica napus L.). Mol Breed 36:52

    Article  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D et al (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YX, Luo CY, Du DZ et al (2014) Quantitative trait analysis of flowering time in spring rapeseed (B. napus L.). Euphytica 200:321–335

    Article  Google Scholar 

  • Marzougui S, Sugimoto K, Yamanouchi U et al (2012) Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice. Theor Appl Genet 124:893–902

    Article  PubMed  Google Scholar 

  • Mei DS, Wang HZ, Hu Q et al (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465

    Article  Google Scholar 

  • Mika V, Tillmann P, Koprna R et al. (2003) Fast prediction of quality parameters in whole seeds of oilseed rape (Brassica napus L.). Plant Soil Environ 49:141–145

    Article  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Ogawa S, Valencia MO, Lorieux M et al (2016) Identification of QTLs associated with agronomic performance under nitrogen-deficient conditions using chromosome segment substitution lines of a wild rice relative, Oryza rufipogon. Acta Physiol Plant 38:103

    Article  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F et al (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Qiao W, Qi L, Cheng Z et al (2016) Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311. BMC Genom 17:580

    Article  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561

    Article  CAS  PubMed  Google Scholar 

  • Rae AM, Howell EC, Kearsey MJ (1999) More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83:586–596

    Article  PubMed  Google Scholar 

  • Raman H, Raman R, Eckermann P et al (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126:119–132

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Raman R, Coombes N et al (2016) Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ 39:1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Ramsay LD, Jennings DE, Kearsey MJ et al (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39:558–567

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Jenkins JN, Wu J et al (2008) Genetic analysis of agronomic and fibre traits using four interspecific chromosome substitution lines in cotton. Plant Breed 127:612–618

    Article  Google Scholar 

  • Shi J, Ruiyuan L, Dan Q et al (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwabe K, Iketani H, Nunome T et al (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Takai T, Ikka T, Kondo K et al (2014) Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines. BMC Plant Biol 14:295

    Article  PubMed  PubMed Central  Google Scholar 

  • van Berloo R (1999) Computer note. GGT: software for the display of graphical genotypes. J Hered 90:328–329

    Article  Google Scholar 

  • Wang J, Wan X, Crossa J et al (2006) QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res 88:93–104

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Long Y, Wu B et al (2009) The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang X, Chen X et al (2012) Abundance, marker development and genetic mapping of microsatellites from unigenes in Brassica napus. Mol Breed 30:731–744

    Article  CAS  Google Scholar 

  • Wang W, He Q, Yang H et al (2013) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica 189:293–307

    Article  Google Scholar 

  • Wang N, Chen B, Xu K et al (2016) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7:338

    PubMed  PubMed Central  Google Scholar 

  • Xiao S, Xu J, Li Y et al (2007) Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome 50:611–618

    Article  CAS  PubMed  Google Scholar 

  • Xin D, Qi Z, Jiang H et al (2016) QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS ONE 11:e0149380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Qian X, Wang X et al (2010a) Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genom 11:594

    Article  CAS  Google Scholar 

  • Xu J, Zhao Q, Du P, Wang B (2010b) Developing high throughput genotyping chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genom 11:656

    Article  CAS  Google Scholar 

  • Xu L, Hu K, Zhang Z et al (2015) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52

    PubMed  PubMed Central  Google Scholar 

  • Yang P, Shu C, Chen L et al (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125:285–296

    Article  PubMed  Google Scholar 

  • Yang D, Zhang Y, Zhu Z et al (2013) Substitutional mapping the cooked rice elongation by using chromosome segment substitution lines in rice. Mol Plant Breed 4:107–115

    Google Scholar 

  • Ye G, Liang S, Wan J (2010) QTL mapping of protein content in rice using single chromosome segment substitution lines. Theor Appl Genet 121:741–750

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Liu C, Wang Y et al (2015a) Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytol 206:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Meng L, Liu B et al (2015b) A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Sci 241:211–220

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Zhu H, Zeng R et al (2016) Detection of additive and additive × environment interaction effects of QTLs for yield-component traits of rice using single-segment substitution lines (SSSLs). Plant Breed 135:452–458

    Article  CAS  Google Scholar 

  • Zheng M, Peng C, Liu H et al (2017) Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci 8:1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Niu Y, Tao Y et al (2015) Construction of high-throughput genotyped chromosome segment substitution lines in rice (Oryza sativa L.) and QTL mapping for heading date. Plant Breed 134:156–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Basic Research and Development Programme of China (2015CB150200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kede Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Communicated by Matthew N Nelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, B., Liu, G. et al. A comprehensive and precise set of intervarietal substitution lines to identify candidate genes and quantitative trait loci in oilseed rape (Brassica napus L.). Theor Appl Genet 131, 2117–2129 (2018). https://doi.org/10.1007/s00122-018-3140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3140-4

Navigation