Skip to main content
Log in

Exploiting the Rht portfolio for hybrid wheat breeding

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The portfolio of available Reduced height loci (Rht-B1, Rht-D1, and Rht24) can be exploited for hybrid wheat breeding to achieve the desired heights in the female and male parents, as well as in the hybrids, without adverse effects on other traits relevant for hybrid seed production.

Abstract

Plant height is an important trait in wheat line breeding, but is of even greater importance in hybrid wheat breeding. Here, the height of the female and male parental lines must be controlled and adjusted relative to each other to maximize hybrid seed production. In addition, the height of the resulting hybrids must be fine-tuned to meet the specific requirements of the farmers in the target regions. Moreover, this must be achieved without adversely impacting traits relevant for hybrid seed production. In this study, we explored Reduced height (Rht) loci effective in elite wheat and exploited their utilization for hybrid wheat breeding. We performed association mapping in a panel of 1705 wheat hybrids and their 225 parental lines, which besides the Rht-B1 and Rht-D1 loci revealed Rht24 as a major QTL for plant height. Furthermore, we found that the Rht-1 loci also reduce anther extrusion and thus cross-pollination ability, whereas Rht24 appeared to have no adverse effect on this trait. Our results suggest different haplotypes of the three Rht loci to be used in the female or male pool of a hybrid breeding program, but also show that in general, plant height is a quantitative trait controlled by numerous small-effect QTL. Consequently, marker-assisted selection for the major Rht loci must be complemented by phenotypic selection to achieve the desired height in the female and male parents as well as in the wheat hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  Google Scholar 

  • Beri SM, Anand SC (1971) Factors affecting pollen shedding capacity in wheat. Euphytica 20:327–332

    Article  Google Scholar 

  • Boeven PHG, Longin CFH, Leiser WL, Kollers S, Ebmeyer E, Würschum T (2016a) Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet 129:2343–2357

    Article  PubMed  Google Scholar 

  • Boeven PHG, Longin CFH, Würschum T (2016b) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129:1231–1245

    Article  PubMed  Google Scholar 

  • Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R (2002) “ Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Gilmour AR, Gogel B, Cullis B, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hempstead

    Google Scholar 

  • Gowda M, Zhao Y, Würschum T, Longin CFH, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Martinant J-P, Mette MF, Reif JC (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552–561

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171

    Article  Google Scholar 

  • He S, Zhao Y, Mette MF, Bothe R, Ebmeyer E, Sharbel TF, Reif JC, Jiang Y (2015) Prospects and limits of marker imputation in quantitative genetic studies in European elite wheat (Triticum aestivum L.). BMC Genom 16:168

    Article  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Schmidt RH, Zhao Y, Reif JC (2017) A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet 49:1741–1746

    Article  PubMed  CAS  Google Scholar 

  • Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Mol Breed 27:417–437

    Article  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS One 8:e57500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014) Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breed 133:433–441

    Article  Google Scholar 

  • Le Couviour F, Faure S, Poupard B, Flodrops Y, Dubreuil P, Praud S (2011) Analysis of genetic structure in a panel of wheat varieties and relevance for association mapping. Theor Appl Genet 123:715–727

    Article  PubMed  Google Scholar 

  • Liu G, Zhao Y, Gowda M, Longin CFH, Reif JC, Mette MF (2016) Predicting hybrid performances for quality traits through genomic-assisted approaches in Central European wheat. PLoS One 11:e0158635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longin CFH, Mühleisen J, Maurer HP, Zhang H, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  PubMed  Google Scholar 

  • Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801

    Article  PubMed  Google Scholar 

  • Longin CFH, Reif JC, Würschum T (2014) Long-term perspective of hybrid versus line breeding in wheat based on quantitative genetic theory. Theor Appl Genet 127:1635–1641

    Article  PubMed  Google Scholar 

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Lu Q, Lillemo M, Skinnes H, He X, Shi J, Ji F, Dong Y, Bjørnstad Å (2013) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    Article  PubMed  CAS  Google Scholar 

  • Miedaner T, Voss HH (2008) Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48:2115–2122

    Article  Google Scholar 

  • Mühleisen J, Piepho H, Maurer HP, Longin CFH, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  PubMed  Google Scholar 

  • Muqaddasi QH, Lohwasser U, Nagel M, Börner A, Pillen K, Röder MS (2016) Genome-wide association mapping of anther extrusion in hexaploid spring wheat. PLoS One 11:e0155494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP et al (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnett DG (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat. Aust J Agric Res 52:1221–1234

    Article  CAS  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org

  • Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S (2017) Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci 8:1379

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm EP, Mackay IJ, Saville RJ, Korolev AV, Balfourier F, Greenland AJ, Boulton MI, Powell W (2013a) Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126:1733–1747

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013b) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126:2233–2243

    Article  PubMed  CAS  Google Scholar 

  • Worland T, Snape JW (2001) Genetic basis of worldwide wheat varietal improvement. In: Bonjean AP, Angus WJ (eds) The world wheat book—a history of wheat breeding, vol 1. Lavoisier Publishing, Paris, pp 59–100

    Google Scholar 

  • Würschum T, Langer SM, Longin CFH (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874

    Article  PubMed  CAS  Google Scholar 

  • Würschum T, Leiser WL, Weissmann S, Maurer HP (2017a) Genetic architecture of male fertility restoration of Triticum timopheevii cytoplasm and fine-mapping of the major restorer locus Rf3 on chromosome 1B. Theor Appl Genet 130:1253–1266

    Article  PubMed  CAS  Google Scholar 

  • Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL (2017b) A modern Green Revolution gene for reduced height in wheat. Plant J 92:892–903

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci USA 112:15624–15629

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the German Federal Ministry of Food and Agriculture within the ZUCHTWERT Project (Grant FKZ0103010). The authors would like to thank the International Wheat Genome Sequencing Consortium (http://www.wheatgenome.org) for providing pre-publication access to IWGSC RefSeq v1.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Ethics declarations

Ethical standard

The authors declare that the experiments comply with the current laws of Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ian Mackay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würschum, T., Liu, G., Boeven, P.H.G. et al. Exploiting the Rht portfolio for hybrid wheat breeding. Theor Appl Genet 131, 1433–1442 (2018). https://doi.org/10.1007/s00122-018-3088-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3088-4

Navigation