Skip to main content
Log in

Mapping of new quantitative trait loci for sudden death syndrome and soybean cyst nematode resistance in two soybean populations

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars.

Abstract

Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing ‘A95-684043’, a high-yielding maturity group (MG) II line resistant to SCN, with ‘LS94-3207’ and ‘LS98-0582’ of MG IV, resistant to both F. virguliforme and SCN. Two hundred F7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abeysekara NS, Bhattacharyya MK (2014) Analyses of the xylem sap proteomes identified candidate Fusarium virguliforme proteinaceous toxins. PLoS ONE 9:e93667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abney SA, Crochet WD (2004) The uniform soybean tests, northern region 2004. USDA-ARS, Department of Agronomy, Purdue University, West Lafayette

    Google Scholar 

  • Aoki T, O’Donnell K, Homma Y, Lattanzi A (2003) Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex-F. virguliforme in North America and F. tucumaniae in South America. Mycologia 95:660–684

    PubMed  Google Scholar 

  • Bernard RL, Noel GR, Anand SC, Shannon JG (1988) Registration of ‘Fayette’ soybean. Crop Sci 28:1028–1029

    Google Scholar 

  • Bradley C, Allen T (2014) Estimates of soybean yield reductions caused by diseases in the United States. Department of Crop Science Extension and Outreach, University of Illinois Urbana-Champaign. http://extension.cropsciences.illinois.edu/fieldcrops/diseases/yield_reductions.php. Accessed 30 Nov 2016

  • Brar HK, Swaminathan S, Bhattacharyya MK (2011) The Fusarium virguliforme toxin FvTox1 causes foliar sudden death syndrome-like symptoms in soybean. Mol Plant Microbe Interact 24:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Brzostowski LF, Schapaugh WT, Rzodkiewicz PA, Todd TC, Little CR (2014) Effect of host resistance to Fusarium virguliforme and Heterodera glycines on sudden death syndrome disease severity and soybean yield. Plant Health Prog. https://doi.org/10.1094/PHP-RS-13-0100

    Google Scholar 

  • Caviness CE, Riggs RD, Walters HJ (1975) Registration of Lee 74 soybean (Reg. No. 106). Crop Sci 15:100

    Article  Google Scholar 

  • Chang SJC, Doubler TW, Kilo V, Suttner R, Klein J (1996) Two additional loci underlying durable field resistance to soybean sudden death syndrome (SDS). Crop Sci 36:1684–1688

    Article  Google Scholar 

  • Chang SJC, Doubler TW, Kilo VY, AbuThredeih J, Prabhu R (1997) Association of loci underlying field resistance to soybean sudden death syndrome (SDS) and cyst nematode (SCN) race 3. Crop Sci 37:965–971

    Article  CAS  Google Scholar 

  • Chang W, Dong L, Wang Z, Hu H, Han Y, Teng W, Zhang H, Guo M, Li W (2011) QTL underlying resistance to two HG types of Heterodera glycines found in soybean cultivar ‘L-10’. BMC Genomics 12:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cianzio SR, Arelli P, Uphoff M, Mansur L, Schultz S, Ruff R (2002) Soybean germplasm line A95-684043. ISURF docket # 02975. Iowa State University, Ames

    Google Scholar 

  • Cianzio SR, Bhattacharyya MK, Swaminathan S, Westgate M, Gebhart G, Rivera-Velez N, Lundeen P, Van Der Molen K, Pruski TI (2014) Registration of AR10SDS soybean germplasm partially resistant to sudden death syndrome and resistant to soybean cyst nematode. J Plant Regist 8:200–210

    Article  Google Scholar 

  • Cianzio SR, Lundeen P, Gebhart G, Rivera-Velez N, Bhattacharyya MK, Swaminathan S (2016) Registration of AR11SDS soybean germplasm resistant to sudden death syndrome, soybean cyst nematode and with moderate iron deficiency chlorosis scores. J Plant Regist 10:177–188

    Article  Google Scholar 

  • CIMMYT (2005) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 3rd edn. CIMMYT, Mexico, pp 2–4

    Google Scholar 

  • Concibido VC, Denny RL, Boutin SR, Hautea R, Orf JH (1994) DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci 34:240–246

    Article  CAS  Google Scholar 

  • Concibido VC, Lange DA, Denny RL, Orf JH, Young ND (1997) Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI 88788 using DNA markers. Crop Sci 37:258–264

    Article  CAS  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209

    Article  CAS  PubMed  Google Scholar 

  • Davis EL, Tylka GL (2000) Soybean cyst nematode disease. Plant Health Instruct. https://doi.org/10.1094/PHI-I-2000-0725-01

    Google Scholar 

  • Davis EL, Hussey R, Baum T (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    Article  PubMed  Google Scholar 

  • de Farias-Neto AL, Hashmi R, Schmidt M, Carlson S, Hartman GL, Li S, Nelson RL, Diers BW (2007) Mapping and confirmation of a new sudden death syndrome resistance QTL on linkage group D2 from the soybean genotypes PI 567374 and ‘Ripley’. Mol Breed 20:53–62

    Article  CAS  Google Scholar 

  • Faghihi J, Donald PA, Noel G, Welacky TW, Ferris VR (2010) Soybean resistance to field populations of Heterodera glycines in selected geographic areas. Plant Health Prog. https://doi.org/10.1094/PHP-2010-0426-01-RS

    Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harb Sympos Quant Biol 68:69–78

    Article  CAS  PubMed  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied egression, 2nd edn. Sage, Thousand Oaks.  http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

  • Gelin JR, Arelli PR, Rojas-Cifuentes GA (2006) Using independent culling to screen plant introductions for combined resistance to soybean cyst nematode and sudden death syndrome. Crop Sci 46:2081–2083

    Article  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucl Acids Res 38(suppl 1):D843–D846

    Article  CAS  PubMed  Google Scholar 

  • Grinnan R, Carter TE Jr, Johnson MTJ (2013) Effects of drought, temperature, herbivory, and genotype on plant–insect interactions in soybean (Glycine max). Arthropod Plant Interact 7:201–205

    Article  Google Scholar 

  • Guo B, Sleper DA, Arelli PR, Shannon JG, Nguyen HT (2005) Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet 111:965–971

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Sun J, Sleper DA, Nguyen HT, Arelli PR, Shannon JG (2006) Pooled analysis of data from multiple quantitative trait locus mapping populations. Theor Appl Genet 113:39–48

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Wang D, Gordon S, Helliwell E, Smith T, Berry S, St. Martin S, Dorrance A (2008) Genetic mapping of QTLs underlying partial resistance to Sclerotinia sclerotiorum in soybean PI 391589A and PI 391589B. Crop Sci 48:1129–1139

    Article  Google Scholar 

  • Hartman GL, Huang YH, Nelson RL, Noel GR (1997) Germplasm evaluation of Glycine max for resistance to Fusarium solani, the causal organism of sudden death syndrome. Plant Dis 81:515–518

    Article  Google Scholar 

  • Hartman GL, Huang YH, Li S (2004) Phytotoxicity of Fusarium solani culture filtrates from soybeans and other hosts assayed by stem cuttings. Australas Plant Pathol 33:9–15

    Article  Google Scholar 

  • Hartman GL, Chang H-X, Leandro LF (2015) Research advances and management of soybean sudden death syndrome. J Crop Protect 73:60–66

    Article  Google Scholar 

  • Hartwig EE, Epps JM (1968) Registration of ‘dyer’ soybean. Crop Sci 8:402

    Article  Google Scholar 

  • Hartwig EE, Epps JM (1973) Registration of ‘forrest’ soybean. Crop Sci 13:287

    Article  Google Scholar 

  • Heatherly LG, Hodges HF (1998) Soybean production in the midsouth. CRC Press, London

    Book  Google Scholar 

  • Heer JA, Knap HT, Mahalingam R, Shipe ER, Arelli PR, Matthews BF (1998) Molecular markers for resistance to Heterodera glycines in advanced soybean germplasm. Mol Breed 4:359–367

    Article  CAS  Google Scholar 

  • Hnetkovsky N, Chang SJC, Doubler TW, Gibson PT, Lightfoot DA (1996) Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Sci 36:393–400

    Article  CAS  Google Scholar 

  • Huang X, Das A, Sahu BB, Srivastava SK, Leandro LF, O’Donnell K, Bhattacharyya MK (2016) Identification of highly variable supernumerary chromosome segments in an asexual pathogen. PLoS ONE 11(6):e0158183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huynh T, Bastien M, Iquira E, Turcotte P, Belzile F (2010) Identification of QTLs associated with partial resistance to white mold in soybean using field-based inoculation. Crop Sci 50:969–979

    Article  Google Scholar 

  • Hyten D, Song Q, Choi I-Y, Yoon M-S, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  CAS  PubMed  Google Scholar 

  • Hyten D, Choi I-Y, Song Q, Specht J, Carter T, Shoemaker R, Hwang EY, Matukumalli L, Cregan P (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • Iqbal MJ, Meksem K, Njiti VN, Kassem M, Lightfoot DA (2001) Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex × Forrest RILs. Theor Appl Genet 102:187–192

    Article  CAS  Google Scholar 

  • Iqbal MJ, Ahsan R, Afzal AJ, Jamai A, Meksem K, El Shemy H, Lightfoot DA (2009) Analysis of the activity of the soybean laccase encoded within the Rhg1/Rfs2 locus. Curr Issue Mol Biol 11:i11–i19

    CAS  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL analysis platform. Bioinformatics 24:2788–2789

    Article  CAS  PubMed  Google Scholar 

  • Kadam S, Vuong TD, Qiu D, Meinhardt CG, Song L, Deshmukh R, Patil G, Wan J, Valliyodan B, Scaboo AM, Shannon JG, Nguyen HT (2016) Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci 242:342–350

    Article  CAS  PubMed  Google Scholar 

  • Kandel YR, Bradley CA, Wise KA, Chilvers MI, Tenuta AU, Davis VM, Esker PD, Smith DL, Licht MA, Mueller DS (2015) Effect of glyphosate application on sudden death syndrome of glyphosate-resistant soybean under field conditions. Plant Dis 99:347–354

    Article  CAS  Google Scholar 

  • Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ, Lightfoot DA (2006) An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 113:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Kassem MA, Meksem K, Wood AJ, Lightfoot DA (2007) Loci underlying SDS and SCN resistance mapped in the ‘Essex’ by ‘Forrest’ soybean recombinant inbred lines. Rev Biol Biotech 6:2–10

    Google Scholar 

  • Kassem MA, Ramos L, Leandro L, Mbofung G, Hyten DL, Kantartzi SK, Grier RL IV, Njiti VN, Cianzio S, Meksem K (2012) The ‘PI 438489B’ by ‘Hamilton’ SNP-based genetic linkage map of soybean [Glycine max (L.) Merr.] identified quantitative trait loci that underlie seedling SDS resistance. J Plant Genome Sci 1:18–30

    Article  Google Scholar 

  • Kazi S, Njiti VN, Doubler TW, Yuan J, Iqbal JM, Cianzio S, Lightfoot DA (2007) Registration of the Flyer × Hartwig recombinant inbred line mapping population. J Plant Regist 1:175–178

    Article  Google Scholar 

  • Kazi S, Shultz J, Afzal J, Johnson J, Njiti VN, Lightfoot DA (2008) Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theor Appl Genet 116:967–977

    Article  CAS  PubMed  Google Scholar 

  • Kazi S, Shultz J, Afzal J, Hashmi R, Jasim M, Bond J, Arelli PR, Lightfoot DA (2010) Iso-lines and inbred-lines confirmed loci that underlie resistance from cultivar ‘Hartwig’ to three soybean cyst nematode populations. Theor Appl Genet 120:633–644

    Article  PubMed  Google Scholar 

  • Kim K-S, Vuong TD, Qiu D, Robbins RT, Grover Shannon J, Li Z, Nguyen HT (2016) Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. Theor Appl Genet 129:2295–2311

    Article  CAS  PubMed  Google Scholar 

  • Koenning SR, Wrather JA (2010) Suppression of soybean yield potential in the continental United States from plant disease estimated from 2006 to 2009. Plant Health Prog. https://doi.org/10.1094/PHP-2010-1122-01-RS

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Leandro LF, Tatalovic N, Luckew A (2012) Soybean sudden death syndrome-advances in knowledge and disease management. CAB Rev 7:1–14

    Article  Google Scholar 

  • Lee TG, Diers BW, Hudson ME (2016) An efficient method for measuring copy number variation applied to improvement of nematode resistance in soybean. Plant J 88:143–153

    Article  CAS  PubMed  Google Scholar 

  • Li S, Hartman GL, Widholm JM (1999) Viability staining of soybean suspension cultured cells and a stem-cutting assay to evaluate phytotoxicity of Fusarium solani culture filtrates. Plant Cell Rep 18:375–380

    Article  CAS  Google Scholar 

  • Li X, Han Y, Teng W, Zhang S, Yu K, Poysa V, Anderson T, Ding J, Li W (2010) Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars Conrad and Hefeng 25. Theor Appl Genet 121:651–658

    Article  PubMed  Google Scholar 

  • Lightfoot DA (2015) Two decades of molecular marker-assisted breeding for resistance to soybean sudden death syndrome. Crop Sci 55:1460–1484

    Article  CAS  Google Scholar 

  • Lightfoot DA, Gibson PT, Meksem K (2007) Method of determining soybean sudden death syndrome resistance in a soybean plant. In: U.S. Patent 7288386, 30 Oct 2007

  • Liu ZH, Hu J, Anderson JA, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Kandoth PK, Warren S, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El Mellouki T, Juvale P, Hill J, Baum T, Cianzio SR, Whitham S, Korkin D, Mitchum M, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    CAS  PubMed  Google Scholar 

  • Liu S, Kandoth PK, Lakhssassi N, Kang J, Colantonio V, Heinz R, Yeckel G, Zhou Z, Bekal S, Dapprich J, Rotter B, Cianzio SR, Mitchum MG, Meksem K (2017) The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat Commun 8:14822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Shannon JG, Sleper DA, Nguyen HT, Cianzio SR, Arelli PR (2006) Genetics of cyst nematode resistance in soybean PIs 467312 and 507354. Euphytica 149:259–265

    Article  Google Scholar 

  • Mansur LM, Carriquiry AL, Rao-Arelli AP (1993) Generation mean analysis of resistance to race 3 of soybean cyst nematode. Crop Sci 33:1249–1253

    Article  Google Scholar 

  • Meksem K, Pantazopoulos P, Njiti VN, Hyten LD, Arelli PR, Lightfoot DA (2001) ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the rhg1 and Rhg4 loci. Theor Appl Genet 103:710–717

    Article  CAS  Google Scholar 

  • Mitchum MG (2016) Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology 106:1444–1450

    Article  CAS  PubMed  Google Scholar 

  • Mitchum MG, Wrather JA, Heinz RD, Shannon JG, Danekas G (2007) Variability in distribution and virulence phenotypes of Heterodera glycines in Missouri during 2005. Plant Dis 91:1473–1476

    Article  Google Scholar 

  • Mueller D, Hartman G, Nelson R, Pedersen W (2002) Evaluation of Glycine max germ plasm for resistance to Fusarium solani f. sp. glycines. Plant Dis 86:741–746

    Article  Google Scholar 

  • Mueller DS, Nelson RL, Hartman GL, Pedersen WL (2003) Response of commercially developed soybean cultivars and the ancestral soybean lines to Fusarium solani f. sp. glycines. Plant Dis 87:827–831

    Article  Google Scholar 

  • Niblack TL, Arelli PR, Noel GR, Opperman CH, Orf JH, Schmitt DP, Shannon JG, Tylka GL (2002) A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol 34:279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niblack TL, Colgrove AL, Colgrove K, Bond JP (2008) Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788. Plant Health Prog. https://doi.org/10.1094/PHP-2008-0118-01-RS

    Google Scholar 

  • Niblack TL, Tylka GL, Arelli P, Bond J, Diers B, Donald P, Faghihi J, Ferris VR, Gallo K, Heinz RD, Lopez-Nicora H, Qualen RV, Welacky T, Wilcox J (2009) A standard greenhouse method for assessing soybean cyst nematode resistance in soybean: SCE08 (standardized cyst evaluation 2008). Plant Health Prog. https://doi.org/10.1094/PHP-2009-0513-01-RV

    Google Scholar 

  • Njiti VN, Lightfoot DA (2006) Genetic analysis infers Dt loci underlie resistance to Fusarium solani f. sp glycines in indeterminate soybeans. Can J Plant Sci 86:83–90

    Article  CAS  Google Scholar 

  • Njiti VN, Meksem K, Iqbal MJ, Johnson JE, Kassem MA, Zobrist AF, Kilo VY, Lightfoot DA (2002) Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet 104:294–300

    Article  CAS  PubMed  Google Scholar 

  • Prabhu RR, Njiti VN, Johnson JE, Schmidt ME, Klein RJ, Lightfoot DA (1999) Selecting soybean cultivars for dual resistance to cyst nematode sudden death syndrome with two DNA markers. Crop Sci 39:982–987

    Article  CAS  Google Scholar 

  • Pudake R, Swaminathan S, Sahu B, Leandro L, Bhattacharyya MK (2013) Investigation of the Fusarium virguliforme fvtox1 mutants revealed that the FvTox1 toxin is involved in foliar sudden death syndrome development in soybean. Curr Genet 59:107–117

    Article  CAS  PubMed  Google Scholar 

  • Qiu BX, Arelli PR, Sleper DA (1999) RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ × ‘Essex’ population. Theor Appl Genet 98:356–364

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rincker K, Cary T, Diers BW (2017) Impact of soybean cyst nematode resistance on soybean yield. Crop Sci 57:1373–1382

    Article  CAS  Google Scholar 

  • Robertson A, Leandro L (2010) Answers to questions about soybean sudden death syndrome in Iowa 2010. In: Integrated crop management news and Iowa state university extension. http://www.extension.iastate.edu/CropNews/2010/0907robertsonleandro.html

  • Roy KW, Hershman DE, Rupe JC, Abney TS (1997) Sudden death syndrome of soybean. Plant Dis 81:1100–1111

    Article  Google Scholar 

  • Ruben E, Jamai A, Afzal J, Njiti VN, Triwitayakorn K, Iqbal MJ, Yaegashi S, Bashir R, Kazi S, Arelli P, Town CD, Ishihara H, Meksem K, Lightfoot DA (2006) Genomic analysis of the rhg1 locus: candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genomics 276:503–516

    Article  CAS  PubMed  Google Scholar 

  • Rupe JC (1989) Frequency and pathogenicity of Fusarium solani recovered from soybeans with sudden death syndrome. Plant Dis 73:581–584

    Article  Google Scholar 

  • Rupe J, Gbur E, Marx D (1991) Cultivar responses to sudden death syndrome of soybean. Plant Dis 75:47–50

    Article  Google Scholar 

  • Sanogo S, Yang XB, Scherm H (2000) Effects of herbicides on Fusarium solani f. sp glycines and development of sudden death syndrome in glyphosate-tolerant soybean. Phytopathology 90:57–66

    Article  CAS  PubMed  Google Scholar 

  • Scherm H, Yang XB (1996) Development of sudden death syndrome of soybean in relation to soil temperature and soil water potential. Phytopathology 86:642–649

    Article  Google Scholar 

  • Schmidt ME, Klein JH (2004) Registration of ‘LS94-3207’ soybean. Crop Sci 44:1482–1483

    Article  Google Scholar 

  • Schmidt ME, Myers O Jr, Gibson PT (1993) Registration of ‘Pharaoh’ soybean. Crop Sci 33:210–211

    Article  Google Scholar 

  • Schmitt DP, Shannon JG (1992) Differentiating soybean responses to Heterodera glycines races. Crop Sci 32:275–277

    Article  Google Scholar 

  • Srour A, Afzal AJ, Saini N, Blahut-Beatty L, Hemmati N, Simmonds DH, El Shemy H, Town CD, Sharma H, Liu X, Li W, Lightfoot DA (2012) The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses. BMC Genomics 13:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens PA, Nickell CD, Kolb FL (1993) Genetic analysis of resistance to Fusarium solani in soybean. Crop Sci 33:929–930

    Article  Google Scholar 

  • Swaminathan S, Abeysekara NS, Liu M, Cianzio SR, Bhattacharyya MK (2016) Quantitative trait loci underlying host responses of soybean to Fusarium virguliforme toxins that cause foliar sudden death syndrome. Theor Appl Genet 129:495–506

    Article  CAS  PubMed  Google Scholar 

  • Tucker D, Maroof SM, Mideros S, Skoneczka J, Nabati D, Buss G, Hoeschele I, Tyler B, St. Martin S, Dorrance A (2010) Mapping quantitative trait loci for partial resistance to Phytophthora sojae in a soybean interspecific cross. Crop Sci 50:628–635

    Article  Google Scholar 

  • Tylka GL, Marett CC (2014) Distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada, 1954 to 2014. Plant Health Prog 15:85–87. https://doi.org/10.1094/php-br-14-0006

    Google Scholar 

  • Vuong T, Sleper D, Shannon J, Nguyen H (2010) Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet 121:1253–1266

    Article  CAS  PubMed  Google Scholar 

  • Webb DM, Baltazar BM, Raoarelli AP, Schupp J, Clayton K (1995) Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437654. Theor Appl Genet 91:574–581

    Article  CAS  PubMed  Google Scholar 

  • Weismann JM, Matthews BF, Devine TE (1992) Molecular markers located proximal to the soybean cyst nematode resistance gene, Rhg4. Theor Appl Genet 85:136–138

    Google Scholar 

  • Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers MI, Schmidt C, Song Q, Cregan PB, Wang D (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15:809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winstead NN, Skotian CB, Sasser JN (1955) Soybean cyst nematode in North Carolina. Plant Dis Rep 39:9–11

    Google Scholar 

  • Wrather JA, Ploper LD (1996) Soybean disease loss estimates for the top ten producing countries during 1994. Phytopathology 86:S41

    Google Scholar 

  • Wu X, Blake S, Sleper D, Shannon JG, Cregan P, Nguyen H (2009) QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet 118:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Xing LJ, Westphal A (2013) Synergism in the interaction of Fusarium virguliforme with Heterodera glycines in sudden death syndrome of soybean. J Plant Dis Protect 120:209–217

    Article  Google Scholar 

  • Yamanaka N, Fuentes F, Gilli J, Watanabe S, Harada K, Ban T, Abdelnoor R, Nepomuceno A, Homma Y (2006) Identification of quantitative trait loci for resistance against soybean sudden death syndrome caused by Fusarium tucumaniae. Pesqui Agropecu Bras 41:1385–1391

    Article  Google Scholar 

  • Yu N, Lee TG, Rosa DP, Hudson M, Diers BW (2016) Impact of Rhg1 copy number, type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean. Theor Appl Genet 129:2403–2412

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Bashir R, Salas G, Sharma H, Srour A, Lightfoot DA (2012) New approaches to selecting resistance or tolerance to SDS and Fusarium root rot. J Plant Genome Sci 1:10–17

    Article  Google Scholar 

  • Yue P, Arelli PR, Sleper DA (2001) Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet 102:921–928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted by grants provided by the United Soybean Board (USB), National Institute of Food and Agriculture (NIFA), United States Department of Agriculture (Grant no. 2013-68004-20374) and the Iowa Soybean Association. We also thank Peter Lundeen, Alexander Luckew, Gregory Gebhart, and Kyle VanDer Molen for their assistance during the course of the work. We thank Dr. Perry Cregan for his assistance in conducting SNP mapping using the Illumina Golden Gate assay. We thank Dr. David Grant for kindly reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia R. Cianzio.

Ethics declarations

Conflict of interest

To the best knowledge of each and all authors, there are no conflicts of interests.

Human and/or animal participants

The research does not involve human and/or animal participants.

Informed consent

All authors have communicated their consent.

Additional information

Communicated by Brian Diers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 264 kb)

Supplementary material 2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, S., Abeysekara, N.S., Knight, J.M. et al. Mapping of new quantitative trait loci for sudden death syndrome and soybean cyst nematode resistance in two soybean populations. Theor Appl Genet 131, 1047–1062 (2018). https://doi.org/10.1007/s00122-018-3057-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3057-y

Navigation