Skip to main content
Log in

Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major QTL ( qRtsc8 - 1 ) conditioning resistance to tar spot complex of maize and occurring at a frequency of 3.5 % across 890 maize inbred lines.

Abstract

Tar spot complex (TSC) is a highly destructive disease of maize found in some countries in America. Identification of TSC resistant germplasm and elucidating the genetic mechanism of resistance is crucial for the use of host resistance to manage this disease. We evaluated 890 elite maize inbred lines in multiple environments and used genome wide association analysis (GWAS) with genotypic data from Illumina MaizeSNP50 BeadChip containing 56 K SNPs to dissect the genetics of TSC resistance. GWAS results were validated through linkage analysis in three bi-parental populations derived from different resistant and susceptible parents. Through GWAS, three TSC resistance loci were identified on chromosome 2, 7 and 8 (−log10 (p) > 5.99). A major quantitative resistance locus (QTL) designated qRtsc8-1, was detected on maize chromosome bin 8.03. qRtsc8-1, was confirmed in three independent bi-parental populations and it accounted for 18–43 % of the observed phenotypic variation for TSC. A rare haplotype within the qRtsc8-1 region, occurring at a frequency of 3.5 % increased TSC resistance by 14 %. Candidate gene analysis revealed that a leucine-rich repeat receptor-like protein (LRR-RLKs) gene family maybe the candidate gene for qRtsc8-1. Identification and localization of a major locus conditioning TSC resistance provides the foundation for fine mapping qRtsc8-1 and developing functional markers for improving TSC resistance in maize breeding programs. To the best of our knowledge, this is the first report of a major QTL for TSC resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen JR, Schrag T, Melchinger AE, Zein I, Lübberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111:206–217

    Article  CAS  PubMed  Google Scholar 

  • Bajet NB, Renfro BL, Valdéz-Carrasco JM (1994) Control of tar spot of maize and its effect on yield. Int J Pest Manag 40:121–125

    Article  Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Ceballos H, Deutsch JA (1992) Inheritance of resistance to tar spot complex in Maize. Phytopathology 82:505–512

    Article  Google Scholar 

  • Chen Z (2011) Is the weighted z test the best method for combining probabilities from independent tests? J Evol Biol 24:926–930

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ding J, Li H, Li Z, Sun X, Li J, Wang R, Dai X, Dong H, Song W, Chen W, Xia Z, Wu J (2012) Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed 30:1649–1656

    Article  CAS  Google Scholar 

  • CIMMYT (2005) Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory, 3rd edn. CIMMYT, Mexico, DF

    Google Scholar 

  • CIMMYT Maize Program (2004) Maize diseases: a guide for field identification, 4th edn. CIMMYT, Mexico, DF

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Holme J, Anthony J (2014) SNP genotyping: the KASP assay. Methods Mol Biol 1145:75–86

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ramos L, Sandoval-Islas JS, Mahuku G, Benítez-Riquelme I, Cruz-Izquierdo S (2015) Genetics of resistance to tar spot complex in 18 tropical maize genotypes. Rev Fitotec Mex 38:39–47

    Google Scholar 

  • Hock J, Kranz J, Renfro B (1989) El complejo “mancha de asfalto” de maíz: Su distribucción geográfica, requisitos ambientales e importancia económica en México. Rev Mex Fitopatol 7:129–135

    Google Scholar 

  • Hock J, Dittrich U, Renfro BL, Kranz J (1992) Sequential development of pathogens in the maize tarspot disease complex. Mycopathologia 117:157–161

    Article  Google Scholar 

  • Hock J, Kranz J, Renfro BL (1995) Studies on the epidemiology of the tar spot disease complex of maize in Mexico. Plant Pathol 44:490–502

    Article  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS One 5:e9958

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel Macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317–321

    Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. PNAS 107:19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Shah T, Hao Z, Taba S, Zhang S, Gao S, Liu J, Cao M, Wang J, Prakash AB, Rong T, Xu Y (2011) Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS One 6:e24861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahuku G, Shrestha R, San Vicente FM (2013) Complejo mancha de asfalto del maíz: Hechos y acciones. Bol EnlACe 84:1–6. http://conservacion.cimmyt.org/index.php/es/boletin-ac/2013/741-boletin-no-84. http://conservacion.cimmyt.org/index.php/es/component/docman/doc_view/922-tarspot

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olukolu BA, Nigeri A, Dhawan R, Venkata BP, Sharma P et al (2013) A connected set of genes associated with programmed cell death implicated in controlling the hypersensitive response in maize. Genetics 193:609–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci. 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ProMED-mail (2009) PRO/PL > Undiagnosed fungus, maize—Guatemala (02): tar spot. Archive number: 20090420.1491

  • ProMED-mail (2011) PRO/PL > Tar spot, maize—Honduras: spread. Archive number: 20110210.0456

  • ProMED-mail (2013) PRO/PL > Tar spot, maize—El Salvador: 1st rep (LI). Archive number: 20130411.1639445

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, de Vries S, Zipfel C (2011) The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Semagn K, Magorokosho C, Vivek BS, Makumbi D, Beyene Y, Mugo S, Prasanna BM, Warburton ML (2012) Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. BMC Genom 13:113

    Article  CAS  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Frei UK, Wang B, Lai J, Lübberstedt T, Xu M (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46

    Article  CAS  PubMed  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li H, Zhang L, Meng L (2012) Users’ Manual of QTL IciMapping Version 3.2

  • Wen W, Araus JL, Trushar S, Cairns J, Mahuku G, Banziger M, Torres JL, Sanchez C, Yan J (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51:2569–2581

    Article  Google Scholar 

  • Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One 6:e29229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng J, Liu X, Wang Z, Wang J, Zhang L, Hao Z, Xie C, Li M, Zhang D, Bai L, Liu C, Zhang S, Li X (2012) Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. Phytopathology 102:692–699

    Article  CAS  PubMed  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yang Q, Yin G, Guo Y, Zhang D, Chen S, Xu M (2010) A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 121:673–687

    Article  PubMed  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zan Y, Ji Y, Zhang Y, Yang S, Song Y, Wang J (2013) Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes. BMC Genom 14:318

    Article  CAS  Google Scholar 

  • Zhang Y, Xu L, Fan X, Tan J, Chen W, Xu M (2012) QTL mapping of resistance to gray leaf spot in maize. Theor Appl Genet 125:1797–1808

    Article  PubMed  Google Scholar 

  • Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Regional fund for agricultural technology (FONTAGRO) project FTG-8028, the Bill and Melinda Gates Foundation (BMGF) as part of the project, “Drought Tolerant Maize for Africa (DTMA)”, and the CGIAR research program (CRP) on maize for co-sponsoring this research work. We are grateful to CIMMYT technicians in Mexico and Colombia for managing the trials and contributing to phenotypic evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mahuku.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Augusto Franco Garcia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2016_2698_MOESM1_ESM.jpg

Supplementary Figure S1. The symptoms and development of tar spot complex (TSC) on maize leaves and cobs in Mexico. a-c) Development of the TSC symptoms on young to mature maize leaves; d-g) Impacts of TSC on maize plants and kernel development; h-i) TSC resistant and susceptible maize plants hybrids

122_2016_2698_MOESM2_ESM.tif

Supplementary Figure S2. The most significant SNP markers associated with tar spot complex (TSC) resistance and identified through GWAS for each environment. Manhattan plots, plotted with the individual SNPs on the X-axis and –log10 P value of each SNP derived from the association study on the Y-axis

122_2016_2698_MOESM3_ESM.tif

Supplementary Figure S3. Linkage map generated for a bi-parental population (Pop1). Genetic linkage map generated using 166 SNP markers from the doubled haploid population (Pop1, n = 201) derived from the parental lines CML495 and LaPostaSEQ.C7F64-2-6-2-2-B*3. Each marker name and marker position interval (cM) are shown on the right and left of each chromosome, respectively. QTL detected for different environments and combined environments are shown on the map

122_2016_2698_MOESM4_ESM.tif

Supplementary Figure S4. Linkage map generated for bi-parental population (Pop2). Genetic linkage map generated using 253 SNP markers from the doubled haploid population (Pop2, n = 116) derived from the parental lines CML451 and DTPYC9-F46-1-2-1-2-B*3. Each marker name and marker position interval (cM) are shown on the right and left of each chromosome, respectively. Detected QTL are shown on the map

122_2016_2698_MOESM5_ESM.tif

Supplementary Figure S5. LD decay in qRtsc8-1 region. The x-axis indicates the physical distance between SNPs within the qRtsc8-1 region, y-axis indicates the parameter r2 of LD and the fitting curve (red line) illustrates the LD decay

122_2016_2698_MOESM6_ESM.docx

Supplementary Table S1. Best-bet tar spot complex (TSC) resistance donors and respective haplotype at the qRtsc8-1 region

122_2016_2698_MOESM7_ESM.docx

Supplementary Table S2. Significant SNP markers associated with tar spot complex (TSC) resistance identified through GWAS. Marker indicates the name of the SNP

122_2016_2698_MOESM8_ESM.docx

Supplementary Table S3. QTL for tar spot complex (TSC) resistance determined by ICIM for doubled haploid maize populations evaluated in in Agua Fria in 2012 and 2013

Supplementary Table S4. QTL for tar spot complex (TSC) resistance detected using single marker analysis in Pop3

Supplementary Table S5. Candidate genes linked to SNPS associated with TSC resistance in the qRtsc8-1 region

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahuku, G., Chen, J., Shrestha, R. et al. Combined linkage and association mapping identifies a major QTL (qRtsc8-1), conferring tar spot complex resistance in maize. Theor Appl Genet 129, 1217–1229 (2016). https://doi.org/10.1007/s00122-016-2698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2698-y

Keywords

Navigation