Skip to main content
Log in

Mutations in chicory FEH genes are statistically associated with enhanced resistance to post-harvest inulin depolymerization

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Nucleotidic polymorphisms were identified in fructan exohydrolases genes which are statistically associated with enhanced susceptibility to post-harvest inulin depolymerization.

Abstract

Industrial chicory (Cichorium intybus L.) root is the main commercial source of inulin, a linear fructose polymer used as dietary fiber. Post-harvest, inulin is depolymerized into fructose which drastically increases processing cost. To identify genetic variations associated with enhanced susceptibility to post-harvest inulin depolymerization and related free sugars content increase, we used a candidate-gene approach focused on inulin and sucrose synthesis and degradation genes, all members of the family 32 of glycoside hydrolases (GH32). Polymorphism in these genes was first investigated by carrying out EcoTILLING on two groups of chicory breeding lines exhibiting contrasted response to post-harvest inulin depolymerization. This allowed the identification of polymorphisms significantly associated with depolymerization in three fructan exohydrolase genes (FEH). This association was confirmed on a wider panel of 116 unrelated families in which the FEH polymorphism explained 35 % of the post-harvest variance for inulin content, 36 % of variance for sucrose content, 18 % for inulin degree of polymerization, 23 % for free fructose content and 22 % for free glucose content. These polymorphisms were associated with significant post-harvest changes of inulin content, inulin chain length and free sugars content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arcia PL, Costell E, Tarrega A (2011) Inulin blend as prebiotic and fat replacer in dairy desserts: optimization by response surface methodology. J Dairy Sci 94:2192–2200

    Article  CAS  PubMed  Google Scholar 

  • Baert JRA (1997) The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory (Cichorium intybus L.) roots. Ind Crops Prod 6:195–199

    Article  CAS  Google Scholar 

  • Cadalen T, Morchen M, Blassiau C, Clabaut A, Scheer I, Hilbert JL, Hendriks T, Quillet MC (2010) Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L.). Mol Breed 25:699–722

    Article  CAS  Google Scholar 

  • CGPDB (2013) Lettuce Genome Resource. https://lgr.genomecenter.ucdavis.edu/Home.php. Accessed online 2013/05/20

  • Clark MJ, Robien K, Slavin JL (2012) Effect of prebiotics on biomarkers of colorectal cancer in humans: a systematic review. Nutr Rev 70:436–443

    Article  PubMed  Google Scholar 

  • Clausen MR, Bach V, Edelenbos M, Bertram HC (2012) Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers. J Agric Food Chem 60:9495–9501

    Article  CAS  PubMed  Google Scholar 

  • Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, Escribano J (2013) Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • De Mendiburu F (2010) Agricolae: Statistical Procedures for Agricultural Research Using R (Online) http://tarwi.lamolina.edu.pe/~fmendiburu/. Accessed online 2013/03/05

  • Di Bartolomeo F, Startek JB, Van den Ende W (2013) Prebiotics to fight diseases: reality or fiction? Phytother Res

  • Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Inulin and oligofructose as dietary fiber: a review of the evidence. Crit Rev Food Sci Nutr 41:353–362

    Article  CAS  PubMed  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez RA, MacIntosh GC, Green PJ (1999) Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci 4:429–438

    Article  PubMed  Google Scholar 

  • Hellwege EM, Raap M, Gritscher D, Willmitzer L, Heyer AG (1998) Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs. FEBS Lett 427:25–28

    Article  CAS  PubMed  Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14

    Article  CAS  Google Scholar 

  • Leroy G, Grongnet JF, Mabeau S, Corre DL, Baty-Julien C (2010) Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage. J Sci Food Agric 90:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Maroufi A, Van Bockstaele E, De Loose M (2012) Differential expression of fructan 1-exohydrolase genes involved in inulin biodegradation in chicory (Cichorium intybus) cultivars. Aust J Crop Sci 6:1362–1368

    CAS  Google Scholar 

  • Michiels A, Van Laere A, Van den Ende W, Tucker M (2004) Expression analysis of a chicory fructan 1-exohydrolase gene reveals complex regulation by cold. J Exp Bot 55:1325–1333

    Article  CAS  PubMed  Google Scholar 

  • Millevoi S, Vagner S (2009) Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 38:2757–2774

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muys C, Thienpont C-N, Dauchot N, Maudoux O, Draye X, Van Cutsem P (2013) Integration of AFLPs, SSRs and SNPs markers into a new genetic map of industrial chicory (Cichorium intybus L. va. sativum). Plant Breed. doi:10.1111/pbr.12113

  • Nguyen-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  CAS  PubMed  Google Scholar 

  • Nowak B, von Mueffling T, Grotheer J, Klein G, Watkinson BM (2007) Energy content, sensory properties, and microbiological shelf life of German bologna-type sausages produced with citrate or phosphate and with inulin as fat replacer. J Food Sci 72:S629–S638

    Article  CAS  PubMed  Google Scholar 

  • Portes MT, Figueiredo-Ribeiro Rde C, de Carvalho MA (2008) Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. J Plant Physiol 165:1572–1581

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical coputing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ritsema T, Hernandez L, Verhaar A, Altenbach D, Boller T, Wiemken A, Smeekens S (2006) Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant J 48:228–237

    Article  CAS  PubMed  Google Scholar 

  • Saengthongpinit W, Sajjaanantakul T (2005) Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol Technol 37:93–100

    Article  CAS  Google Scholar 

  • SPW-Portail de l’Agriculture wallonne (2013) Catalogues nationaux des variétés d’espèces de plantes agricoles et des variétés d’espèces de légumes. http://agriculture.wallonie.be/apps/spip_wolwin/article.php3?id_article=68. Accessed online 2013/05/31

  • van Arkel J, Vergauwen R, Sevenier R, Hakkert JC, van Laere A, Bouwmeester HJ, Koops AJ, van der Meer IM (2012) Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.). J Plant Physiol 169:1520–1529

    Article  PubMed  Google Scholar 

  • van den Brink L, Wilting P (2012) Rassenbulletin cichorei. http://www.kennisakker.nl/kenniscentrum/document/rassenbulletin-cichorei. Accessed online 2013/05/31

  • Van den Ende W, Lammens W, Van Laere A, Schroeven L, Le Roy K (2009) Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes. FEBS J 276:5788–5798

    Article  PubMed  Google Scholar 

  • Van den Ende W, Michiels A, De Roover J, Van Laere A (2002) Fructan biosynthetic and breakdown enzymes in dicots evolved from different invertases. Expression of fructan genes throughout chicory development. Sci World J 2:1281–1295

    Article  Google Scholar 

  • Van den Ende W, Michiels A, Van Wonterghem D, Vergauwen R, Van Laere A (2000) Cloning, developmental, and tissue-specific expression of sucrose:sucrose 1-fructosyl transferase from Taraxacum officinale. Fructan localization in roots. Plant Physiol 123:71–80

    Article  PubMed Central  PubMed  Google Scholar 

  • Van den Ende W, Mintiens A, Speleers H, Onuoha A, Van Laere A (1996) The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing. New Phytol 132:555–563

    Article  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  Google Scholar 

  • Van den Ende W, Van Laere A (2002) Induction of 1-FEH in mature chicory roots appears to be related to low temperatures rather than to leaf damage. Sci World J 2:1750–1761

    Article  Google Scholar 

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813

    Article  Google Scholar 

  • Van Waes C, Baert J, Carlier L, Van Bockstaele E (1998) A rapid determination of the total sugar content and the average inulin chain length in roots of chicory (Cichorium intybus L). J Sci Food Agric 76(1):107–110

    Google Scholar 

  • Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Perilleux C, Javaux M, Lutts S (2012) Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J Exp Bot 63:4359–4373

    Article  CAS  PubMed  Google Scholar 

  • Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, Van den Ende W (2007) Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol 174:90–100

    Article  CAS  PubMed  Google Scholar 

  • Verhaest M, Van den Ende W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A (2005) X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J 41:400–411

    Article  CAS  PubMed  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vlaanderen-Landbouw en Visserij (2013) Industriële cichorei: resultaten van rassenproeven. http://lv.vlaanderen.be/nlapps/docs/default.asp?fid=153. Accessed online 2013/05/31

Download references

Acknowledgments

The authors acknowledge the Walloon Region (DGARNE-Belgium) for supporting this research (Grant D31-1221).

Conflict of interest

O. M. and C. N. are members of Cosucra-Group Warcoing S.A.

Ethical standards

The authors acknowledge that the experiments described in this paper comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dauchot.

Additional information

Communicated by I. Paran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM_1.pdf: Sequence alignment of 1-FEH I reference cDNA sequence (AJ242538) with two 1-FEH I alleles (partial sequences) isolated from lines susceptible or resistant to post-harvest inulin depolymerization, respectively.

ESM_2.pdf: Sequence alignment of 1-FEH IIa reference cDNA sequence (AJ295033) with two 1-FEH IIa alleles (partial sequences) isolated from lines susceptible or resistant to post-harvest inulin depolymerization, respectively.

ESM_3.pdf: Sequence alignment of 1-FEH IIb reference cDNA sequence (AJ295034) with two 1-FEH IIb alleles (partial sequences) isolated from lines susceptible or resistant to post-harvest inulin depolymerization, respectively.

ESM_4.pdf: Means and standard error of the three different 1-FEH IIa genotypes, among 116 lines, for five carbohydrates-related parameters, before exposure to cold temperatures.

ESM 5.pdf: Schematic representation of the two 1-FEH IIa alleles, respectively, identified in depolymerization-susceptible (DS lines, D+ allele, JQ585639) or depolymerization-resistant (DR lines, d- allele, JQ585638) lines.

Supplementary material 1 (PDF 96 kb)

Supplementary material 2 (PDF 95 kb)

Supplementary material 3 (PDF 93 kb)

Supplementary material 4 (PDF 191 kb)

Supplementary material 5 (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauchot, N., Raulier, P., Maudoux, O. et al. Mutations in chicory FEH genes are statistically associated with enhanced resistance to post-harvest inulin depolymerization. Theor Appl Genet 127, 125–135 (2014). https://doi.org/10.1007/s00122-013-2206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2206-6

Keywords

Navigation