Skip to main content
Log in

Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

We report here the isolation of spectinomycin-resistant mutants in cultured cells of Medicago sativa line RegenSY-T2. Spectinomycin induces bleaching of cultured alfalfa cells due to inhibition of protein synthesis on the prokaryotic type 70S plastid ribosomes. Spontaneous mutants resistant to spectinomycin bleaching were identified by their ability to form green shoots on plant regeneration medium containing selective spectinomycin concentrations in the range of 25–50 mg/l. Sequencing of the plastid rrn16 gene revealed that spectinomycin resistance is due to mutations in a conserved stem structure of the 16S rRNA. Resistant plants transferred to the greenhouse developed normally and produced spectinomycin-resistant seed progeny. In light of their absence in soybean, a related leguminous plant, the isolation of spectinomycin-resistant mutants in M. sativa was unexpected. The new mutations are useful for the study of plastid inheritance, as demonstrated by detection of predominantly paternal plastid inheritance in the RegenSY-T2 × Szapko57 cross, and can be used as selective markers in plastid transformation vectors to obtain cisgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393

    Article  CAS  Google Scholar 

  • Azhagiri A, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low frequency leakage of plastid via pollen may be universal in plants. Plant J 52:817–823

    Article  PubMed  CAS  Google Scholar 

  • Bingham ET, Hurley LY, Kaatz DM, Saunders JW (1975) Breeding alflafa which regenerates from callus tissue in culture. Crop Sci 15:719–721

    Article  Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  PubMed  CAS  Google Scholar 

  • Brown DCW, Atanassov A (1985) Role of genetic background in somatic embryogenesis. Plant Cell Tiss Org Cult 4:111–122

    Article  Google Scholar 

  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  PubMed  CAS  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Craig W, Lenzi P, Scotti N, De Palma M, Saggese P, Carbone V, McGrath Curran N, Magee AM, Medgyesy P, Kavanagh TA, Dix PJ, Grillo S, Cardi T (2008) Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res 17:769–782

    Article  PubMed  CAS  Google Scholar 

  • Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Rep 5:97–100

    Article  CAS  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    Article  PubMed  CAS  Google Scholar 

  • Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rDNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237

    PubMed  CAS  Google Scholar 

  • Golds T, Maliga P, Koop HU (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Biotechnology 11:95–97

    Article  CAS  Google Scholar 

  • Hagemann R (2002) Milestones in plastid genetics of higher plants. Prog Bot 63:5–51

    Article  CAS  Google Scholar 

  • Huang FC, Klaus SMJ, Herz S, Zuo Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    Article  PubMed  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh TA, O’Driscoll KM, McCabe PF, Dix PJ (1994) Mutations conferring lincomycin, spectinomycin, and streptomycin resistance in Solanum nigrum are located in three different chloroplast genes. Mol Gen Genet 242:675–680

    Article  PubMed  CAS  Google Scholar 

  • Khoudi H, Laberge S, Ferullo JM, Bazin R, Darveau A, Castonguay Y, Allard G, Lemieux R, Vézina LP (1999) Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol Bioeng 64:135–143

    Article  PubMed  CAS  Google Scholar 

  • Koop HU, Herz S, Golds TJ, Nickelsen J (2007) The genetic transformation of plastids. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Berlin, pp 457–510

    Google Scholar 

  • Lelivelt C, McCabe M, Newell C, de Snoo B, Van Dunn K, Birch-Machin I, Gray JC, Mills K, Nugent JM (2005) Plastid transformation in lettuce (Lactuca sativa L). Plant Mol Biol 58:763–774

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Ann Rev Plant Biol 55:289–313

    Article  CAS  Google Scholar 

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel and medicine for the 21st century. Plant Physiol 155:1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Masoud SA, Johnson LB, Sorensen EL (1990) High transmission of paternal plastid DNA in alfalfa plants demonstrated by restriction fragment polymorphic analysis. Theor Appl Genet 79:49–55

    Article  CAS  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404

    Article  Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140

    Article  Google Scholar 

  • Rosellini D, LaFayette PR, Barone P, Veronesi F, Parrott WA (2004) Kanamycin-resistant alfalfa has a point mutation in the 16S plastid rRNA. Plant Cell Rep 22:774–779

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids: foreign protein expression in fruit. Nat Biotechnol 19:870–875

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753

    Article  PubMed  CAS  Google Scholar 

  • Schumann CM, Hanckok JF (1989) Paternal inheritance of plastids in Medicago sativa. Theor Appl Genet 78:863–866

    Article  CAS  Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82

    Article  PubMed  CAS  Google Scholar 

  • Skarjinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115–122

    Article  PubMed  CAS  Google Scholar 

  • Smith SE (1989) Influence of parental genotype on plastid inheritance in Medicago sativa. J Hered 80:214–217

    PubMed  CAS  Google Scholar 

  • Smith SE, Bingham ET, Fulton RW (1986) Transmission of chlorophyll deficiencies in Medicago sativa. J Hered 77:35–38

    CAS  Google Scholar 

  • Sourrouille C, Marquet-Blouin E, D’Aoust MA, Kiefer-Meyer MC, Seveno M, Pagny-Salehabadi S, Bardor M, Durambur G, Lerouge P, Vezina L, Gomord V (2008) Down-regulated expression of plant-specific glycoepitopes in alfalfa. Plant Biotechnol J 6:702–721

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45

    PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1993) Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J 12:601–606

    PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol Gen Genet 228:316–319

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc Natl Acad Sci USA 104:7003–7008

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Thyssen G, Svab Z, Maliga P (2012) Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in progeny. Plant J. doi:10.1111/j.1365-313X.2012.05057.x

    PubMed  Google Scholar 

  • Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences. Transgenic Res 20:137–151

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118

    Article  PubMed  CAS  Google Scholar 

  • Waltz E (2011) GM grass eludes outmoded USDA oversight. Nat Biotechnol 29:772–773

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Liu Y, Lin C, Wang Y, Cai Q, Dong Y, Xing S (2011) Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnol Lett 33:2487–2494

    Article  PubMed  CAS  Google Scholar 

  • Zoschke R, Liere K, Borner T (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J 50:710–722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the HSRF Grant K-82037 and the Research and Development Fund of the Ministry of Agriculture, Hungary. We thank Ms. Ágnes Mihály and Ms. Magdolna Péli for skillful technical assistance. Research on alfalfa plastid inheritance in PM’s laboratory at Rutgers University is supported by the USDA National Institute of Food and Agriculture Biotechnology Risk Assessment Research Grant Program Award No. 2010-2716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga.

Additional information

Communicated by M. Havey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudas, B., Jenes, B., Kiss, G.B. et al. Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa . Theor Appl Genet 125, 1517–1523 (2012). https://doi.org/10.1007/s00122-012-1930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1930-7

Keywords

Navigation