Skip to main content

Advertisement

Log in

A model for linkage analysis with apomixis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Apomixis, or asexual reproduction through seeds, occurs in over 400 species of angiosperms. Although apomixis can favorably perpetuate desired genotypes through successive seed generation, it may also bring about some difficulty for linkage analysis and quantitative trait locus mapping. In this article, we explore the issue of how apomixis affects the precision and power of linkage analysis with molecular markers. We derive a statistical model for estimating the linkage between different markers when some progeny are derived from apomixis. The model was constructed within the maximum likelihood framework and implemented with the EM algorithm. A series of procedures are formulated to test the linkage of markers, the rate of apomixis, and the degree of genetic interference during meiosis. The model was examined and validated through simulation studies. The model will provide a tool for linkage mapping and evolutionary studies for plant species that undergo apomixis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245

    Article  PubMed  CAS  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M et al (2009) Turning meiosis into mitosis. PLoS Biol 7(6):e1000124

    Article  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzlez de Leon D, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39

    Article  PubMed  Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  PubMed  CAS  Google Scholar 

  • Hanna WW (1995) Use of apomixis in cultivar development. Adv Agron 54:333–354

    Article  Google Scholar 

  • Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    Article  PubMed  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  PubMed  CAS  Google Scholar 

  • Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 81:3443–3446

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Cui YH, Wu RL (2004) A multilocus likelihood approach to joint modeling of linkage, parental diplotype and gene order in a full-sib family. BMC Genetics 5:20

    Article  PubMed  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–32

    Article  PubMed  CAS  Google Scholar 

  • Richards AJ (2003) Apomixis in flowering plants: an overview. Philos Trans R Soc Lond B Biol Sci 358:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Spielman M, Vinkenoog R, Scott RJ (2003) Genetic mechanisms of apomixis. Philos Trans R Soc Lond B Biol Sci 358:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Article  Google Scholar 

  • Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development-virgin births in farmers’ fields? Nat Biotechnol 22:687–691

    Google Scholar 

  • Wu RL, Ma CX, Casella G (2007) Statistical genetics of quantitative traits: linkage, maps, and QTL. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by an Open Fund 200602 from former Zhejiang Forestry University, a grant 30771752 from the NSF of China, NSF/IOS-0923975, Changjiang Scholars Award, and “Thousand-person Plan” Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanru Zeng or Rongling Wu.

Additional information

Communicated by M. Sillanpaa.

W. Hou and S. Lin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, W., Lin, S., Li, Y. et al. A model for linkage analysis with apomixis. Theor Appl Genet 123, 681–691 (2011). https://doi.org/10.1007/s00122-011-1618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1618-4

Keywords

Navigation