Skip to main content
Log in

Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrama HA, Widle GE, Reese JC, Campbell LR, Tuinstra MR (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor Appl Genet 104:1373–1378

    Article  PubMed  CAS  Google Scholar 

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin Gustafson JP, Lazo G, Chao SM, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang DS, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng JH, Lapitan NLV, Gonzalez-Hernandeiz JL, Anderson JA, Choi DW, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, McGuire PE, Qualset CO, Dvorak J (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 14:2324–2326

    Article  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: Lessons from comparative QTL studies. In: Proceedings of 49th Ann Corn Sorghum Res Conf Am Seed Trade Ass, Washington, DC, pp 250–266

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  PubMed  CAS  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed  Google Scholar 

  • Bruce AB (1910) The mendelian theory of heredity and the augmentation of vigour. Science 32:627–628

    Article  PubMed  CAS  Google Scholar 

  • Casady AJ (1965) Effect of a single height Dw gene of Sorghum on grain yield, grain yield components, and test weight. Crop Sci 5:385–388

    Article  Google Scholar 

  • Chantereau J, Trouche G, Rami JF, Deu M, Barro C, Grivet L (2001) RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica 120:183–194

    Article  CAS  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang ZW, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH (2002) Genetic, physical and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605

    Article  PubMed  CAS  Google Scholar 

  • Crasta OR, Xu WW, Nguyen HT, Rosenow DT, Mullet J (1999) Mapping of post flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  PubMed  CAS  Google Scholar 

  • Davenport C (1908) Degeneration, albinism and inbreeding. Science 28:454–455

    Article  PubMed  CAS  Google Scholar 

  • Dean RE, Dahlberg JA, Hopkins MS, Mitchell SE, Kresovich S (1999) Genetic redundancy and diversity among ‘orange’ accessions in the US National Sorghum Collection as assessed with simple sequence repeat (SSR) markers. Crop Sci 39:1215–1221

    Article  Google Scholar 

  • Deu M, Ratnadass A, Hamada MA, Noyer JL, Diabate M, Chantereau J (2005) Quantitative trait loci for head-bug resistance in sorghum. Afr J Biotechnol 4:247–250

    CAS  Google Scholar 

  • East E (1908) Inbreeding in corn. Rep Connecticut Agric Exp Stat 1907–1908, pp 419–428

  • Ejeta G, Knoll J (2007) Marker-assisted selection in sorghum. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement. Springer, Berlin, pp 187–205

    Chapter  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intraspecific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Generation Challenge Programme (2009). The GCP Molecular Marker Toolkit. Material developed by Veerle Van Damme for the Generation Challenge Programme and available online at http://www.generationcp.org/sp5_toolboxhomepage_april_09

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTLs associated with resistance to soybean cyst nematode in soybean: Meta-analysis of QTL locations. Crop Sci 46:595–602

    Article  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    PubMed  CAS  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO, Folkertsma RT, Reddy BVS, Kayentao M, Welz HG, Geiger HH (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Jones D (1917) Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad Sci USA 3:310–312

    Article  PubMed  CAS  Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    PubMed  CAS  Google Scholar 

  • Kao FI, Cheng YY, Chow TY, Chen HH, Liu SM, Cheng CH, Chung MC (2006) An integrated map of Oryza sativa L. chromosome 5. Theor Appl Genet 112:891–902

    Article  PubMed  CAS  Google Scholar 

  • Katsar CS, Paterson AH, Teetes GL, Peterson GC (2002) Molecular analysis of Sorghum resistance to the greenbug (Homoptera:Aphididae). J Econ Entomol 95:448–457

    Article  PubMed  CAS  Google Scholar 

  • Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants: where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Kebede H, Subadhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Keeble F, Pellew C (1910) The mode of inheritance of stature and time of flowering in peas (Pisum sativum). J Genet 1:47–56

    Article  Google Scholar 

  • Khowaja FS, Norton GJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10

  • Kim J (2003) Genomic Analysis of sorghum by fluorescence in situ hybridization. PhD thesis. Texas A&M University

  • Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE (2005) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976

    Article  PubMed  CAS  Google Scholar 

  • Kirby JS, Atkins RE (1968) Heterotic response for vegetative and mature plant characters in grain sorghum, Sorghum bicolor L.) Moench. Crop Sci 8:335–339

    Article  Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Liang GHL, Walter TL (1968) Heritability estimates and gene effects for agronomic traits in grain sorghum, Sorghum vulgare Pers. Crop Sci 8:77–81

    Article  Google Scholar 

  • Lijavetzky D, Martinez MC, Carrari F, Hopp HE (2000) QTL analysis and mapping of pre-harvest sprouting resistance in sorghum. Euphytica 112:125–135

    Article  Google Scholar 

  • Lin Y-R, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Liu SY, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Mace E, Jordan D (2010) Location of major effect genes in sorghum (Sorghum bicolor (l.) Moench). Theor Appl Genet. doi:10.1007/s00122-010-1392-8

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  Google Scholar 

  • Menz MA, Klein RR, Mullet J, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP(R), RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Mohan SM, Madhusudhana R, Mathur K, Howarth CJ, Srinivas G, Satish K, Reddy RN, Seetharama N (2009) Co-localization of quantitative trait loci for foliar disease resistance in sorghum. Plant Breed 128:532–535

    Article  Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008a) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008b) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Article  Google Scholar 

  • Nagaraj N, Reese JC, Tuinstra MR, Smith CM, Amand PS, Kirkham MB, Kofoid KD, Campbell LR, Wilde GE (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J Econ Entomol 98:595–602

    Article  PubMed  CAS  Google Scholar 

  • Nagy ED, Lee TC, Ramakrishna W, Xu ZJ, Klein PE, SanMiguel P, Cheng CP, Li JL, Devos KM, Schertz K, Dunkle L, Bennetzen JL (2007) Fine mapping of the Pc locus of Sorghum bicolor, a gene controlling the reaction to a fungal pathogen and its host-selective toxin. Theor Appl Genet 114:961–970

    Article  PubMed  CAS  Google Scholar 

  • Natoli A, Gorni C, Chegdani F, Marsan PA, Colombi C, Lorenzoni C, Marocco A (2002) Identification of QTLs associated with sweet sorghum quality. Maydica 47:311–322

    Google Scholar 

  • Norton GJ, Aitkenhead MJ, Khowaja FS, Whalley WR, Price AH (2008) A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs. Genomics 92:344–352

    Article  PubMed  CAS  Google Scholar 

  • Parh D (2005) DNA-based markers for ergot resistance in sorghum. PhD thesis. University of Queensland, Brisbane

  • Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S-C, Stansel JW, Irvine JE (1995a) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin Y-R, Liu S-C, Chang Y-L (1995b) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Pereira MG, Ahnert D, Lee M, Klier K (1995) Genetic-mapping of Quantitative Trait Loci for panicle characteristics and seed weight in sorghum. Braz J Genet 18:249–257

    CAS  Google Scholar 

  • Perumal R, Menz MA, Mehta PJ, Katile S, Gutierrez-Rojas LA, Klein RR, Klein PE, Prom LK, Schlueter JA, Rooney WL, Magill CW (2009) Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica 165:597–606

    Article  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Ramu P, Deshpande SP, Senthivel S, Jayashree B, Billot C, Deu M, Ananda Reddy L, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breed. doi:10.1007/s11032-009-9365-9

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet x grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Rong J, Feltus EA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JR, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  PubMed  CAS  Google Scholar 

  • Salas Fernandez MG, Hamblin MT, Li L, Rooney WL, Tuinstra MP, Kresovich S (2008) Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci 48:1732–1743

    Article  Google Scholar 

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraj Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci (QTL) for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Monech]. Theor Appl Genet 119:1425–1439

    Article  PubMed  CAS  Google Scholar 

  • Schuler GD (1998) Electronic PCR: bridging the gap between genome mapping and genome sequencing. Trends Biotechnol 16:456–459

    Article  PubMed  CAS  Google Scholar 

  • Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed  CAS  Google Scholar 

  • Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Shull G (1908) The composition of a field of maize. Ann Breed Assoc Rep 4:296–301

    Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Srinivasa Reddy P, Fakrudin B, Rajkumar, Punnuri SM, Arun SS, Kuruvinashetti MS, Das IK, Seetharama N (2008) Molecular mapping of genomic regions harboring QTLs for stalk rot resistance in sorghum. Euphytica 159:191–198

    Article  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Tao YZ, Jordan DR, Henzell RG, McIntyre CL (1998) Identification of genomic regions for rust resistance in sorghum. Euphytica 103:287–292

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, Jordan DR, Butler DG, McIntyre CL (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107:116–122

    PubMed  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49

    Article  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WG (1988) Relationships between yield, base temperature and drought resistance in grain sorghum. S Afr J Plant Soil 5:150–154

    Google Scholar 

  • Winn J, Mason R, Robbina A, Rooney W, Hays D (2009) QTL mapping of a high protein digestibility trait in Sorghum bicolor. Int J Plant Genomics. doi:10.1155/2009/471853

  • Wu YQ, Huang YH (2008) Molecular mapping of QTLs for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench). Theor Appl Genet 117:117–124

    Article  PubMed  CAS  Google Scholar 

  • Wu YQ, Huang YH, Porter DR, Tauer CG, Hollaway L (2007) Identification of a major quantitative trait locus conditioning resistance to greenbug Biotype E in sorghum PI550610 using simple sequence repeat markers. J Econ Entomol 100:1672–1678

    Article  PubMed  CAS  Google Scholar 

  • Xu SZ (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  Google Scholar 

  • Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    PubMed  CAS  Google Scholar 

  • Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT, Schmidt ME, Lightfoot DA (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Colleen Hunt for her assistance in generating the heat maps, and Jerry Franckowiak, Mandy Christopher, Tracey Shatte, Ian Godwin and Peter Prentis for their critical review of the manuscript. We would also like to thank the anonymous reviewers for their comments and suggestions. We also acknowledge the Australian Grains Research and Development Cooperation (GRDC; http://www.grdc.com.au) for contributing a part of the funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Mace.

Additional information

Communicated by E. Guiderdoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2011_1575_MOESM1_ESM.xlsx

Table S1. Description of 771 QTL identified. File format: XLS. Description: Excel spreadsheet containing a list of all 771 QTL identified across 44 studies, and their features including whether there are unique or part of an mQTL, their location, LOD, R 2, publication, source, additive effect, flanking markers in original publication, published symbol and Gramene accession ID. (XLSX 134 kb)

122_2011_1575_MOESM2_ESM.xlsx

Table S2. Locus positions in the expanded consensus map. File format: XLS. Description: Excel spreadsheet containing a list of all consensus map loci and their features; data include the chromosome and position of each locus, details of whether the marker was a bridge marker in the original consensus map (Mace et al. 2009), marker type and multicopy marker details. (XLSX 160 kb)

122_2011_1575_MOESM3_ESM.xlsx

Table S3. 8504 Integrated sequence-mapped markers. File format: XLS. Description: Excel spreadsheet containing a list of all publicly available sequence-mapped SSR markers, together with CISP and selected gene markers, collated by Ramu et al. (2010), integrated with the 2335 sequenced markers placed on the consensus map, and their features; data include the start location of the marker in bp, the chromosome, the location on the consensus map, multicopy marker details and details of overlapping SSRs and duplicates as detailed in Ramu et al. (2010). (XLSX 398 kb)

122_2011_1575_MOESM4_ESM.xlsx

Table S4. The number of QTL per publication and per trait category. File format: XLS. Description: Excel spreadsheet containing a list of QTL for 194 traits, categorised into eight broad categories, identified in 44 publications. (XLSX 83 kb)

122_2011_1575_MOESM5_ESM.xlsx

Table S5. Chi-square statistics for QTL distribution genome-wide. File format: XLS. Description: This file contains two spreadsheets. The first spreadsheet (“All 771 QTL”) is based on the distribution of all 771 QTL and details chi-square statistics and probability values for QTL distribution genome-wide, for each chromosome, heterochromatic and euchromatic regions on each chromosome and heterochromatic and euchromatic regions overall. The second spreadsheet (“mQTL and unique”) is based on the distribution of 125mQTL and 371 unique QTL and details chi-square statistics and probability values for QTL distribution for each chromosome. (XLSX 32 kb)

122_2011_1575_MOESM6_ESM.xlsx

Table S6. Details of the mQTL identified. File format: XLS. Description: Excel spreadsheet containing a list of 125 mQTL and their features, including location and trait category. (XLSX 19 kb)

122_2011_1575_MOESM7_ESM.ppt

Figure S1. Plots of estimated CIs of 771 QTL and 125 mQTL, projected onto the sorghum consensus map. File format: PPT. Description: Plot of 771 QTL and 125 mQTL against the expanded sorghum consensus map. The QTL are colour coded by trait category as follows: grain, red; leaf, dark blue; maturity, yellow; panicle, pink; abiotic stress resistance, bright green; biotic stress resistance, brown; stem composition, bright blue; stem morphology, dark green. The 35 major effect genes identified in Mace and Jordan (2010) are also highlighted in red. (PPT 616 kb)

122_2011_1575_MOESM8_ESM.ppt

Figure S2. QTL and gene density comparisons per chromosome. File format: PPT. Description: Figure S2A. Mean QTL and gene density plots in the heterochromatin and euchromatin per 0.5 cM per chromosome. The total number of QTL with their peak CI position in the heterochromatin is also indicated. Figure S2B. Mean QTL and gene density plots in the heterochromatin and euchromatin per 0.5Mbp per chromosome. The total number of QTL with their peak CI position in the heterochromatin is also indicated. (PPT 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mace, E.S., Jordan, D.R. Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123, 169–191 (2011). https://doi.org/10.1007/s00122-011-1575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1575-y

Keywords

Navigation