Skip to main content
Log in

iPBS: a universal method for DNA fingerprinting and retrotransposon isolation

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Molecular markers are essential in plant and animal breeding and biodiversity applications, in human forensics, and for map-based cloning of genes. The long terminal repeat (LTR) retrotransposons are well suited as molecular markers. As dispersed and ubiquitous transposable elements, their “copy and paste” life cycle of replicative transposition leads to new genome insertions without excision of the original element. Both the overall structure of retrotransposons and the domains responsible for the various phases of their replication are highly conserved in all eukaryotes. Nevertheless, up to a year has been required to develop a retrotransposon marker system in a new species, involving cloning and sequencing steps as well as the development of custom primers. Here, we describe a novel PCR-based method useful both as a marker system in its own right and for the rapid isolation of retrotransposon termini and full-length elements, making it ideal for “orphan crops” and other species with underdeveloped marker systems. The method, iPBS amplification, is based on the virtually universal presence of a tRNA complement as a reverse transcriptase primer binding site (PBS) in LTR retrotransposons. The method differs from earlier retrotransposon isolation methods because it is applicable not only to endogenous retroviruses and retroviruses, but also to both Gypsy and Copia LTR retrotransposons, as well as to non-autonomous LARD and TRIM elements, throughout the plant kingdom and to animals. Furthermore, the inter-PBS amplification technique as such has proved to be a powerful DNA fingerprinting technology without the need for prior sequence knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LTR:

Long terminal repeat

PBS:

Primer binding site

References

  • Alix K, Heslop-Harrison JS (2004) The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol 54:895–909

    Article  CAS  PubMed  Google Scholar 

  • Antonius-Klemola K, Kalendar R, Schulman AH (2006) TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet 112:999–1008

    Article  CAS  PubMed  Google Scholar 

  • Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA 1:6

    Article  PubMed  Google Scholar 

  • Boyko E, Kalendar R, Korzun V, Gill B, Schulman AH (2002) Combined mapping of Aegilops tauschii by retrotransposon, microsatellite, and gene markers. Plant Mol Biol 48:767–790

    Article  CAS  PubMed  Google Scholar 

  • Chaparro C, Guyot R, Zuccolo A, Piegu B, Panaud O (2007) RetrOryza: a database of the rice LTR-retrotransposons. Nucleic Acids Res 35:D66–D70

    Article  CAS  PubMed  Google Scholar 

  • Chariieu J-P, Laurent A-M, Carter DA, Bellis M, Roizeès G (1992) 3′ Alu PCR: a simple and rapid method to isolate human polymorphic markers. Nucleic Acids Res 20:1333–1337

    Article  Google Scholar 

  • Cheng C, Daigen M, Hirochika H (2006) Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomics 276:378–390

    Article  CAS  PubMed  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  PubMed  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Ty1-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Bolshakov VN, Booth A, Jing R, Russell J, Ellis TH, Isaac P (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucleic Acids Res 31:e115

    Article  PubMed  Google Scholar 

  • Hedges DJ, Batzer MA (2005) From the margins of the genome: mobile elements shape primate evolution. BioEssays 27:785–794

    Article  CAS  PubMed  Google Scholar 

  • Hizi A (2008) The reverse transcriptase of the Tf1 retrotransposon has a specific novel activity for generating the RNA self-primer that is functional in cDNA synthesis. J Virol 82:10906–10910

    Article  CAS  PubMed  Google Scholar 

  • Ho SYW, Larson G, Edwards CJ, Tim H, Heupink TH, Lakin KE, Holland PWH, Shapiro B (2008) Correlating Bayesian date estimates with climatic events and domestication using a bovine case study. Biol Lett 4:370–374

    Article  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Itoh T, Tanaka T, Barrero RA et al (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    Article  PubMed  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, French-Italian Public Consortium for Grapevine Genome Characterization et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jing R, Knox MR, Lee JM, Vershinin AV, Ambrose M, Ellis TH, Flavell AJ (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171:741–752

    Article  CAS  PubMed  Google Scholar 

  • Jurka J (2004) Evolutionary impact of human Alu repetitive elements. Curr Opin Genet Dev 14:603–608

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105:5833–5838

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2010) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (in press)

  • Kelly NJ, Palmer MT, Morrow CD (2003) Selection of retroviral reverse transcription primer is coordinated with tRNA biogenesis. J Virol 77:8695–8701

    Article  CAS  PubMed  Google Scholar 

  • Lebedev YB, Belonovitch OS, Zybrova NV, Khil PP, Kurdyukov SG, Vinogradova TV, Hunsmann G, Sverdlov ED (2000) Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene 247:265–277

    Article  CAS  PubMed  Google Scholar 

  • LeGrice SFJ (2003) “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry 42:14349–14355

    Article  CAS  Google Scholar 

  • Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH (2003) Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics 269:464–474

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Vitte C, Ma J, Mahama AA, Dhliwayo T, Lee M, Bennetzen JL (2007) A GeneTrek analysis of the maize genome. Proc Natl Acad Sci USA 104:11844–11849

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago trunculata. BMC Genomics 8:427

    Article  PubMed  Google Scholar 

  • Mak J, Kleiman L (1997) Primer tRNAs for reverse transcription. J Virol 71:8087–8095

    CAS  PubMed  Google Scholar 

  • Marquet R, Isel C, Ehresmann C, Ehresmann B (1995) tRNAs as primer of reverse transcriptases. Biochimie 77:113–124

    Article  CAS  PubMed  Google Scholar 

  • Pearce SR, Stuart-Rogers C, Knox MG, Kumar A, Ellis THN, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711

    Article  CAS  PubMed  Google Scholar 

  • Pereira HS, Barao A, Delgado M, Morais-Cecilio L, Viegas W (2005) Genomic analysis of grapevine retrotransposon 1 (Gret 1) in Vitis vinifera. Theor Appl Genet 111:871–878

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 260:145–173

    CAS  PubMed  Google Scholar 

  • Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. Bioassays 22:148–160

    Article  CAS  Google Scholar 

  • Shi P-Y, Maizels N, Weiner AM (1998) CCA addition by tRNA nucleotidyltransferase: polymerization without translocation? EMBO J 17:3197–3206

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66 kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article  CAS  PubMed  Google Scholar 

  • Syed NH, Flavell AJ (2007) Sequence specific amplification polymorphisms (SSAP)—a multi-locus approach for analysing transposon insertions. Nat Protoc 1:2746–2752

    Article  Google Scholar 

  • Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347

    Article  CAS  PubMed  Google Scholar 

  • Tang JQ, Korab-Laskowska M, Jarnik M, Cardinal G, Vanasse M, Melançon SB, Labuda D (1995) Alu-PCR combined with non-Alu primers reveals multiple polymorphic loci. Mamm Genome 6:345–349

    Article  CAS  PubMed  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Article  CAS  PubMed  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR (1996) Turned on by stress. Plant retrotransposons. Curr Biol 6:959–961

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner A, Stein N (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J 41:184–194

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen J, Capy P, Chalhoub B, Flavell AJ, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783

    Article  CAS  PubMed  Google Scholar 

  • Xiao R, Park K, Lee H, Kim J, Park C (2008) Identification and classification of endogenous retroviruses in cattle. J Virol 82:582–587

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the many collaborators listed in Online Resource 1 for gifts of plant materials. Eeva-Marja Turkki, Anne-Mari Narvanto, and Ursula Lönnqvist are thanked for their always excellent technical assistance. The work was supported by Ministry of Education of Czech Republic project MSM2678424601 and by the Academy of Finland, Grant 120810, Project Exbardiv of the ERA-NET Plant Genomics program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan H. Schulman.

Additional information

Communicated by T. Komatsuda.

Accession numbers for the sequences resulting from this study: AF538603, AF538607–AF538610, AF538612–AF538617, AJ489246, AY078073–AY078075AY271961, AY643843, AY860307, AY860308, DQ094839–DQ094843, DQ663704–DQ663717, EF19100, EF191001, EF191002, EF191007, EF191008, EF191009, EF191011, EF191012, EF439837, EF555576–EF555582, EU009616–EU009622, EU009624, EU090224, EU105454–EU105459, EU177767–EU177770, EU180578, EU180581–EU180586.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (PDF 91 kb)

Online Resource 2 (PDF 1,236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalendar, R., Antonius, K., Smýkal, P. et al. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121, 1419–1430 (2010). https://doi.org/10.1007/s00122-010-1398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1398-2

Keywords

Navigation