Skip to main content
Log in

Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

This study identified four and five quantitative trait loci (QTLs) for 1,000-grain weight (TGW) and spikelets per panicle (SPP), respectively, using rice recombinant inbred lines. QTLs for the two traits (SPP3a and TGW3a, TGW3b and SPP3b) were simultaneously identified in the two intervals between RM3400 and RM3646 and RM3436 and RM5995 on chromosome 3. To validate QTLs in the interval between RM3436 and RM5995, a BC3F2 population was obtained, in which TGW3b and SPP3b were simultaneously mapped to a 2.6-cM interval between RM15885 and W3D16. TGW3b explained 50.4% of the phenotypic variance with an additive effect of 1.81 g. SPP3b explained 29.1% of the phenotypic variance with an additive effect of 11.89 spikelets. The interval had no effect on grain yield because it increased SPP but decreased TGW and vice versa. Grain shape was strongly associated with TGW and was used for QTL analysis in the BC3F2 population. Grain length, grain width, and grain thickness were also largely controlled by TGW3b. At present, it is not clear whether one pleiotropic QTL or two linked QTLs were located in the interval. However, the conclusion could be made ultimately by isolation of TGW3b. The strategy for TGW3b isolation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Baldet P, Hernould M, Laporte F, Mounet F, Just D, Mouras A, Chevalier C, Rothan C (2006) The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. J Exp Bot 57:961–970

    Article  CAS  PubMed  Google Scholar 

  • Basten C, Weir B, Zeng Z (2003) QTL cartographer: a reference manual and tutorial for QTL mapping. QTL cartographer version 1.17

  • Cheng S, Zhuang J, Fan Y, Du J, Cao L (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966

    Article  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Wellert JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    CAS  PubMed  Google Scholar 

  • Evans LT (1972) Storage capacity as a limitation on grain yield. In: Rice Breeding. International Rice Research Institute, Los Banos, pp 499–511

  • Fan CC, Xing YZ, Lu MaoHL, TT HanB, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Kato T (1993) Variation in grain-filling process among grain positions within a panicle of rice (Oryza sativa L.). SABRAO J 25:1–10

    Google Scholar 

  • Kato T, Takeda K (1996) Association among characters related to yield sink capacity in space-planted rice. Crop Sci 36:1135–1139

    Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100:11765–11770

    Article  CAS  PubMed  Google Scholar 

  • Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice Oryza sativa L. Genetics 145:453–465

    CAS  PubMed  Google Scholar 

  • Li ZK, Pinson SRM, Stansel JW, Paterson AH (1998) Genetic dissection of the source–sink relationship affecting fecundity and yield in (Oryza sativa L.). Mol Breed 4:419–442

    Article  CAS  Google Scholar 

  • Li JM, Thomson M, McCouch RS (2004) Fine mapping of a grain weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195

    Article  CAS  PubMed  Google Scholar 

  • Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927

    Article  CAS  Google Scholar 

  • Lincoln S, Daley M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP 3.0, 3rd edn. Whitehead Institute Technical Report, Cambridge

  • Lincoln SE, Daly MJ, Lander ES (1993) Mapping genes controlling quantitative traits with MAPMAKER/QTL1.1: a tutorial and reference manual, 2nd edn. Whitehead Institute Technical Report, Cambridge

  • Liu T, Mao D, Zhang S, Xu C, Xing Y (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza Sativa). Theor Appl Genet 118:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2, 240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Shimamot K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Jiang W, Rahman M, Chu S, Piao R, Han L, Koh H (2007) Comparison of molecular linkage maps and QTLs for morphological traits in two reciprocal backcross populations of rice. Mol Cells 25:417–427

    Google Scholar 

  • Rahman M, Chu S, Choi M, Qiao Y, Jiang W, Piao R, Khanam S, Cho Y, Jeung J, Jena K, Koh H (2007) Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta. Mol Cells 24:16–26

    CAS  PubMed  Google Scholar 

  • Samonte S, Wilson L, McClung A (1998) Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. Crop Sci 38:1130–1136

    Article  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Takamure I, Kinoshita T (1994) Genic analysis for a small grain mutant induced from cultivar Kitaake. Rice Genet Newsl 11:89–91

    Google Scholar 

  • Takamure I, Hong MC, Kinoshita T (1995) Genetic analyses for two kinds of mutants for long grain. Rice Genet Newsl 12:199–201

    Google Scholar 

  • Takeda K, Kato T (1992) Duplicate genes controlling long grain of a rice variety IRAT13. Rice Genet Newsl 9:59–60

    Google Scholar 

  • Takeda K, Saito K (1977) The inheritance and character expression of the minute gene derived from a rice genetic tester Minute. Bull Fac Agric Hirosaki Univ 27:1–29

    Google Scholar 

  • Takeda K, Saito K (1980) Major genes responsible for grain shape in rice. Jpn J Breed 30:280–282

    Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartihour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Gene 113:619–629

    Article  CAS  Google Scholar 

  • Wang SG, Zeng ZB (2003) Windows QTL Cartographer v2.0. Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Song M, Jin F, Ahn S, Suh J, Hwang H, McCouch SR (2006) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113:885–894

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Jin F, Song M, Suh J, Hwang H, Kim Y, McCouch SR, Ahn S (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  CAS  PubMed  Google Scholar 

  • Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang Q (2008) Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116:789–796

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Luo L, Liu T, Xu C, Xing Y (2009) Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theor Appl Genet 118:1035–1044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors kindly thank farm technician Mr. J. B. Wang for his excellent fieldwork. This study was supported by a grant from the National Natural Science Foundation, National Key Program of Basic Development, and Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Xing.

Additional information

Communicated by F. van Eeuwijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Shao, D., Kovi, M.R. et al. Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.). Theor Appl Genet 120, 933–942 (2010). https://doi.org/10.1007/s00122-009-1222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1222-z

Keywords

Navigation