Skip to main content
Log in

Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The degree of aluminium tolerance varies widely across cereal species, with oats (Avena spp.) being among the most tolerant. The objective of this study was to identify molecular markers linked to aluminium tolerance in the diploid oat A. strigosa. Restriction fragment length polymorphism markers were tested in regions where comparative mapping indicated the potential for orthologous quantitative trait loci (QTL) for aluminium tolerance in other grass species. Amplified fragment length polymorphism (AFLP) and sequence-characterized amplified region (SCAR) markers were used to provide additional coverage of the genome. Four QTL were identified. The largest QTL explained 39% of the variation and is possibly orthologous to the major gene found in the Triticeae as well as Alm1 in maize and a minor gene in rice. A second QTL may be orthologous to the Alm2 gene in maize. Two other QTL were associated with anonymous markers. Together, these QTL accounted for 55% of the variation. A SCAR marker linked to the major QTL identified in this study could be used to introgress the aluminium tolerance trait from A. strigosa into cultivated oat germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can J Genet Cytol 26:701–705

    Google Scholar 

  • De Koeyer DL, Tinker NA, Wight CP, Deyl J, Burrows VD, Oȁ9Donoughue LS, Lybaert A, Molnar SJ, Armstrong KA, Fedak G, Wesenberg DM, Rossnagel BG, McElroy AR (2004) A molecular linkage map with associated QTLs from a hulless x covered spring oat population. Theor Appl Genet 108:1285–1298

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993a) Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Foy CD (1992) Soil chemical factors limiting plant root growth. Adv Soil Sci 19: 97–149

    CAS  Google Scholar 

  • Gallego FJ, López-Solanilla E, Figueiras AM, Benito C (1998a) Chromosomal location of PCR fragments as a source of DNA markers linked to aluminium tolerance genes in rye. Theor Appl Genet 96:426–434

    Article  CAS  Google Scholar 

  • Gallego FJ, Calles B, Benito C (1998b) Molecular markers linked to the aluminium tolerance gene Alt1 in rye (Secale cereale L.). Theor Appl Genet 97:1104–1109

    Article  CAS  Google Scholar 

  • Holloway JL, Knapp SJ (1993) G-MENDEL 3.0: Software for the analysis of genetic markers and maps. Oregon State University, Corvallis, pp 1–130

    Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dong Q, Polacco ML, Brendel V (2004) MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32:D393–D397

    Article  PubMed  CAS  Google Scholar 

  • Luo M-C, Dvorák J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    Article  CAS  Google Scholar 

  • Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Takeda K (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot 55:1335–1341

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Taketa S, Yang ZM (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol 122:687–694

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167:1905–1914

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143

    Article  PubMed  CAS  Google Scholar 

  • Miftahudin, Scoles GJ, Gustafson JP (2002) AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor Appl Genet 104:626–631

    Article  CAS  Google Scholar 

  • Miftahudin, Chikmawati T, Ross K, Scoles GJ, Gustafson JP (2005) Targeting the aluminum tolerance gene Alt3 region in rye, using rice/rye micro-colinearity. Theor Appl Genet 110:906–913

    Article  PubMed  CAS  Google Scholar 

  • Moore G (1995) Cereal genome evolution: pastoral pursuits with ȁ8Legoȁ9 genomes. Curr Opinion Genet Dev 5:717–724

    Article  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5: 737–739

    Article  PubMed  CAS  Google Scholar 

  • Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Polon 48:673–686

    PubMed  CAS  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    PubMed  CAS  Google Scholar 

  • Nguyen VT, Nguyen BD, Sarkarung S, Martinez C, Paterson AH, Nguyen HT (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Genomics 267:772–780

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VT, Burow MD, Nguyen HT, Le BT, Le TD, Paterson AH (2001) Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet 102:1002–1010

    Article  CAS  Google Scholar 

  • Ninamango-Cárdenas FE, Guimarães CT, Martins PR, Parentoni SN, Carneiro NP, Lopes MA, Moro JR, Paiva E (2003) Mapping QTLs for aluminum tolerance in maize. Euphytica 130:223–232

    Article  Google Scholar 

  • Oȁ9Donoughue LS, Wang Z, Röder M, Kneen B, Leggett M, Sorrells ME, Tanksley SD (1992) An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula). Genome 35:765–771

    Google Scholar 

  • Portyanko VA, Hoffman DL, Lee M, Holland JB (2001) A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 44:249–265

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Karakousis A, Moroni JS, Raman R, Read BJ, Garvin DF, Kochian LV, Sorrells ME (2003) Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Aus J Agric Res 54:1315–1321

    Article  CAS  Google Scholar 

  • Raman H, Moroni JS, Sato K, Read BJ, Scott BJ (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Richards KD, Snowden KC, Gardner RC (1994) wali6 and wali7: Genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol 105:1455–1456

    Article  PubMed  CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Rodriguez Milla MA, Butler E, Rodriguez Huete A, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Chacón CD, Federizzi LC, Milach SCK, Pacheco MT (2000) Variabilidade genética e herança da tolerância à toxicidade do alumínio em aveia. Pesq Agropec Bras, Brasilia 35:1797–1808

    Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Sibov ST, Gaspar M, Silva MJ, Ottoboni LMM, Arruda P, Souza AP (1999) Two genes control aluminum tolerance in maize: Genetic and molecular mapping analyses. Genome 42:475–482

    Article  CAS  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1-3-β-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1005

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi D-W, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Tang Y, Sorrells ME, Kochian LV, Garvin DF (2000) Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci 40:778–782

    Article  CAS  Google Scholar 

  • Tinker NA (1999) Management of multiple molecular marker maps with multiple molecular marker map manager (Mmmmm). J Agric Genomics 4. Published with permission from CAB International. Full text available from http://www.cabi-publishing.org/JAG

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, Falk DE, Ferguson T, Shugar LP, Legge WG, Irvine RB, Choo TM, Briggs KG, Ullrich SE, Franckowiak JD, Blake TK, Graf RJ, Dofing SM, Saghai Maroof MA, Scoles GJ, Hoffman D, Dahleen LS, Kilian A, Chen F, Biyashev RM, Kudrna DA, Steffenson BJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  • Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Agric Genomics 1. Published with permission from CAB International. Full text available from http://www.cabi-publishing.org/JAG

  • Van Deynze AE, Nelson JC, Oȁ9Donoughue LS, Ahn SN, Siripoonwiwat W, Harrington SE, Yglesias ES, Braga DP, McCouch SR, Sorrells ME (1995a) Comparative mapping in grasses. Oat relationships. Mol Gen Genet 249:349–356

    Article  PubMed  Google Scholar 

  • Van Deynze AE, Nelson JC, Yglesias ES, Harrington SE, Braga DP, McCouch SR, Sorrells ME (1995b) Comparative mapping in grasses. Wheat relationships. Mol Gen Genet 248:744–754

    Article  PubMed  Google Scholar 

  • Wagner CM, Milach SCK, Federizzi LC (2001) Genetic inheritance of aluminum tolerance in oat. Crop Breeding Appl Biotechnol 1:22–26

    Google Scholar 

  • Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K, Cartinhour S, Stein LD, McCouch SR (2002) Gramene, a tool for grass genomics. Plant Physiol 130:1606–1613

    Article  PubMed  CAS  Google Scholar 

  • Wight CP, Tinker NA, Kianian SF, Sorrells ME, Oȁ9Donoughue LS, Hoffman DL, Groh S, Scoles GJ, Li CD, Webster FH, Phillips RL, Rines HW, Livingston SM, Armstrong KC, Fedak G, Molnar SJ (2003) A molecular marker map in Kanota × Ogle hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. Genome 46:28–47

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ, He C (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295–1303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was made possible by generous financial support from the Quaker Oats Company (USA), Quaker Tropicana Gatorade (Canada), and the Agriculture and Agri-Food Canada Matching Investment Initiative. We thank Don Beauchesne, Linda Vandermaar, Stefan Halisky, Zachary Fouchard, and Ana Beatriz Locatelli for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Molnar.

Additional information

Communicated by H. H. Geiger

S. Kibite: In Memoriam

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wight, C.P., Kibite, S., Tinker, N.A. et al. Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. Theor Appl Genet 112, 222–231 (2006). https://doi.org/10.1007/s00122-005-0114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0114-0

Keywords

Navigation