Skip to main content
Log in

Partial sequences of nitrogen metabolism genes in hexaploid wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Our objective was to partially sequence genes controlling nitrogen metabolism in wheat species in order to find sequence polymorphism that would enable their mapping. Primers were designed for nitrate reductase, nitrite reductase, glutamate dehydrogenase and glutamate synthase (GOGAT), and gene fragments were amplified on Triticum aestivum, T. durum, T. monococcum, T. speltoides and T. tauschii. We obtained more than 8 kb of gene sequences, mainly as coding regions (60%). Polymorphism was quantified by comparing two-by-two the three genomes of the hexaploid cultivar Arche and genomes of diploid wheat species. On average, the polymorphism rate was higher for non-coding regions, where it ranged from 1/60 to 1/23, than for coding regions (range: 1/110–1/40) except when the hexaploid D genome was compared to that of T. tauschii (1/800 and 1/816, respectively). Genome-specific primers were devised for the ferredoxin-dependent (Fd)-GOGAT gene, and they enabled the mapping of this gene on homoeologous chromosomes of group 2 using Chinese Spring deletion lines. A single nucleotide polymorphism (SNP) detected between the two hexaploid wheat cultivars Arche and Récital was used to genetically map Fd-GOGAT on chromosome 2D using a population of dihaploid lines. Fd-GOGAT-specific primers were used to estimate the SNP rate on a set of 11 hexaploid and nine Durum wheat genotypes leading to the estimate of 1 SNP/515 bp. We demonstrate that polymorphism detection enables heterologous, homeologous and even paralogous copies to be assigned, even if the elaboration of specific primer pairs is time-consuming and expensive because of the sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avila C, Marquez AJ, Pajuelo P, Cannell ME, Wallsgrove RM, Forde BG (1993) Cloning and sequence analysis of a cDNA for barley ferredoxin-dependent glutamate synthase and molecular analysis of photorespiratory mutants deficient in the enzyme. Planta 189:475–483

    Article  PubMed  CAS  Google Scholar 

  • Bertin P, Gallais A (2001) Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines. II. QTL detection and coincidences. Maydica 46:53–68

    Google Scholar 

  • Bundock PC, Christopher JT, Eggler P, Ablett G, Henry RJ, Holton TA (2003) Single nucleotide polymorphism in cytochrome P450 genes from barley. Theor Appl Genet 106:676–682

    PubMed  CAS  Google Scholar 

  • Cheng C, Dewdney J, Nam H, den Boer BGW, Goodman HM (1988) A new locus (NIA 1) in Arabidopsis thaliana encoding nitrate reductase. EMBO J 7:3309–3314

    PubMed  CAS  Google Scholar 

  • Cock JM, Kim KD, Miller PW, Hutson RG, Schmidt RR (1991) A nuclear gene with many introns encoding ammonium-inducible chloroplastic NADP-specific glutamate dehydrogenase(s) in Chlorella sorokiniana. Plant Mol Biol 17:1023–1044

    Article  PubMed  CAS  Google Scholar 

  • Coschigano KT, Melo-Oliveira R, Lim J, Coruzzi GM (1998) Arabidopsis gls mutants and distinct Fd-GOGAT genes. Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10:741–752

    Google Scholar 

  • Dhugga KS, Waines JG (1989) Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Sci 29:1232–1239

    Article  Google Scholar 

  • Dubois F, Tercé-Laforgue T, Gonzalez-Moro MB, Estavillo MB, Sangawan R, Gallais A, Hirel B (2003) Glutamate dehydrogenase in plants; is there a new story for an old enzyme? Plant Physiol Biochem 41:565–576

    Article  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    Article  CAS  Google Scholar 

  • Ficarelli A, Tassi F, Restivo FM (1999) Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia. Plant Cell Physiol 40:339–342

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Akagawa T, Kojima S, Hayakawa T, Yamaya T. (1998) Organization and structure of NADH-dependent glutamate synthase gene from rice plants. Biochim Biophys Acta 1387:298–308

    Article  PubMed  CAS  Google Scholar 

  • Gowri G, Campbell WH (1989) cDNA clones for corn leaf NADH: nitrate reductase and chloroplast NAD(P)(+): glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol 90:792–798

    Article  PubMed  CAS  Google Scholar 

  • Gregerson RG, Miller SS, Twary SN, Gantt JS, Vance CP(1993) Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell 5:215–226

    PubMed  CAS  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retaillau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Kanazin V, Talbert H, See D, DeCamp P, Nevo E, Blake T (2002) Discovery and assay of single nucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol Biol 48:529–537

    Article  PubMed  CAS  Google Scholar 

  • Kilian A, Kleinhofs A, Warner RL (1992) Localization of NAD(P)H-bispecific nitrate reductase genes to chromosomes of barley, wheat, and Aegilops umbellulata. Theor Appl Genet 85:274–275

    PubMed  CAS  Google Scholar 

  • Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement. Agronomy Monograph 13, 2nd edn. American Society of Agronomy, Madison, pp 154–164

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lagudah E, Dubcovsky J, Powell W (2001) Wheat genomics. Plant Physiol Biochem 39:335–344

    Article  CAS  Google Scholar 

  • Lahners K, Kramer V, Back E, Privalle L, Rothstein S (1988) Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol 88:741–746

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur J Agron 12:163–173

    Article  CAS  Google Scholar 

  • Liu B (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca Raton

    Google Scholar 

  • Long DM, Oaks A, Rothstein SJ (1992) Regulation of maize root nitrate reductase mRNA levels. Physiol Plant 85:561–566

    Article  CAS  Google Scholar 

  • Loudet O, Chaillou S, Krapp A, Daniel-Vedele F (2003a) Quantitative trait loci analysis of water and anions contents in interaction with nitrogen availability in Arabidopsis thaliana. Genetics 163:711–722

    CAS  Google Scholar 

  • Loudet O, Chaillou S, Merigout P, Tallbotec J, Daniel-Vedele F (2003b) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358

    Article  CAS  Google Scholar 

  • Melo-Oliveira R, Oliveira IC, Coruzzi GM (1996) Arabidopsis mutant analysis and gene regulation define a non redundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci USA 93:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki J, Juricek M, Angelis K, Schnorr KM, Kleinhofs A, Warner RL (1991) Characterization and sequence of a novel nitrate reductase from barley. Mol Gen Genet 228:329–334

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Fujii K, Sugiyama T (1995) Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol 36:789–797

    PubMed  CAS  Google Scholar 

  • Sakakibara H, Watanabe M, Hase T, Sugiyama T (1991) Molecular cloning and characterization of complementary DNA encoding for ferredoxin-dependent glutamate synthase in maize leaf. J Biol Chem 266:2028–2035

    PubMed  CAS  Google Scholar 

  • Samson D, Legeai F, Karsenty E, Reboux S, Veyrieras JB, Just J, Barillot E (2003) GenoPlante-Info (GPI): a collection of databases and bioinformatics resources for plant genomics. Nucleic Acids Res 31:179–182

    Article  PubMed  CAS  Google Scholar 

  • Schnorr KM, Juricek M, Huang CX, Culley D, Kleinhofs A (1991) Analysis of barley nitrate reductase cDNA and genomic clones. Mol Gen Genet 227:411–416

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Univ Mo Res Bull 572:1–58

    Google Scholar 

  • Somers D, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 49:431–437

    Article  Google Scholar 

  • Suzuki A, Rothstein S (1997) Structure and regulation of ferredoxin-dependent glutamase synthase from Arabidopsis thaliana. Cloning of cDNA expression in different tissues of wild-type and gltS mutant strains, and light induction. Eur J Biochem 243:708–718

    Article  PubMed  CAS  Google Scholar 

  • Terada Y, Aoki H, Tanaka T, Morikawa H, Ida S (1995) Cloning and nucleotide sequence of a leaf ferredoxin-nitrite reductase cDNA of rice. Biosci Biotechnol Biochem 59:2183–2185

    Article  PubMed  CAS  Google Scholar 

  • Wilbur WJ, Lipman .J (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80:726–730

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Crawford NM (1993) Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol Gen Genet 239:289–297

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Génoplante French Genomics project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Le Gouis.

Additional information

Communicated by D.A. Hoisington

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisson, M., Mondon, K., Torney, V. et al. Partial sequences of nitrogen metabolism genes in hexaploid wheat. Theor Appl Genet 110, 932–940 (2005). https://doi.org/10.1007/s00122-004-1913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1913-4

Keywords

Navigation