Skip to main content
Log in

Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arabidopsis Genome Iniative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  PubMed  Google Scholar 

  • Aranzana M, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder C, Testolin R, Abbott A, King G, Iezzoni A, Arús P (2003) A set of simple sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    CAS  PubMed  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771

    Article  CAS  PubMed  Google Scholar 

  • Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J (2001) Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L). Genome 44:111–119

    Article  Google Scholar 

  • Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431

    Article  CAS  Google Scholar 

  • Chagné D, Lalanne C, Madur D, Kumar S, Frigério J, Krier C, Decroocq S, Savouré A, Bou M, Kharrat D, Bertocchi E, Brach J, Plomion C (2002) A high density genetic map of maritime pine based on AFLPs. Ann For Sci 59:627–636

    Article  Google Scholar 

  • Crespel L, Chirollet M, Durel E, Zhang D, Meynet J, Gudin S (2002) Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor Appl Genet 105:1207–1214

    Article  Google Scholar 

  • Debener T (2003) Inheritance of characters. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose sciences. Elsevier, Oxford, pp 286–292

    Google Scholar 

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article  CAS  Google Scholar 

  • Debener T, Mattiesch L, Vosman B (2001) A molecular marker map for roses. Acta Hortic 547:283–287

    Google Scholar 

  • Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790

    Article  CAS  PubMed  Google Scholar 

  • De Vries DP, Dubois LAM (1996) Rose breeding: past, present, prospective. Acta Hortic 424:241–248

    Google Scholar 

  • Di Gaspero G, Cipriani G (2003) Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Mol Genet Genomics 269:612–623

    Article  Google Scholar 

  • Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, Dry IB (2002) Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theor Appl Genet 104:610–618

    Article  CAS  PubMed  Google Scholar 

  • Esselink D, Smulders M, Vosman B (2003) Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theor Appl Genet 106:277–286

    CAS  PubMed  Google Scholar 

  • Foolad R, Zhang P, Khan AA, Niño-Liu D, Lin Y (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L hirsutum cross. Theor Appl Genet 104:945–958

    Article  Google Scholar 

  • Geerlings H, van Oeveren J, Pot J, Jansen R, Van Schaik R (2003) AFLP Quantar Pro: codominant and expression analysis software. http://www.keygeneproducts.com

  • Gudin S (2000) Rose: genetics and breeding. Plant Breed Rev 17:59–189

    Google Scholar 

  • Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, Van den Berg P, Odinot P, Van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999) An integrated high density RFLP AFLP map of tomato based on two Lycopersicon esculentum × L pennellii F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Hanley S, Barker JHA, Van Ooijen JW, Aldam C, Harris SL, Ahman I, Larsson S, Karp A (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet 105:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Geerlings H, Van Oeveren AJ, Van Schaik RC (2001) A comment on codominant scoring of AFLP markers. Genetics 158:925–926

    Google Scholar 

  • Kaufmann H, Mattiesch L, Lorz H, Debener T (2003) Construction of a BAC library of Rosa rugosa Thunb and assembly of a contig spanning Rdr1, a gene that confers resistance to blackspot. Mol Genet Genomics 267:666–674

    Google Scholar 

  • Kubisiak TL, Nelson CD, Nance WL, Stine M (1995) RAPD linkage mapping in a longleaf pine × slash pine F1 family. Theor Appl Genet 90:1119–1127

    Article  Google Scholar 

  • Lata P (1982) Cytological studies in the genus Rosa II. Meiotic analysis of ten species. Citologia 47:613–637

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh) genome. Theor Appl Genet 106:1497–1508

    CAS  PubMed  Google Scholar 

  • Machida Y, Nishihama R, Kitakura S (1997) Progress in studies of plant homologs of mitogen-activated protein (MAP) kinase and potential upstream components in kinase cascades. Crit Rev Plant Sci 16:481–496

    Google Scholar 

  • Maliepaard C, Van Ooijen JW (1994) QTL mapping in a full-sib family of an outcrossing species. In: Van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Proceeding of the 9th meeting EUCARPIA section biometrics in plant breeding, 6–8 July 1994, Wageningen, pp 140–146

  • Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Van Ginkel VM, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multiallelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Mohler V, Klahr A, Wenzel G, Schwarz G (2002) A resistance gene analog useful for targeting disease resistance genes against different pathogens on group 1S chromosomes of barley, wheat and rye. Theor Appl Genet 105:364–368

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah JB, Stein JC, Kandasamy MK, Nasrallah ME (1994) Signalling the arrest of pollen tube development in self-incompatible plants. Science 266:1505–1508

    Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    CAS  PubMed  Google Scholar 

  • Pejic I, Ajmone MP, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Piepho HP, Koch G (2000) Codominant analysis of banding data from a dominant marker system by normal mixtures. Genetics 155:1459–1468

    Google Scholar 

  • Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394

    CAS  Google Scholar 

  • Quint M, Mihaljevic R, Dussle M, Xu L, Melchinger E, Lübberstedt T (2002) Development of RGA CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize. Theor Appl Genet 105:355–363

    Article  Google Scholar 

  • Rajapakse S (2003) Gene mapping. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose sciences. Elsevier, Oxford, pp 326–334

    Google Scholar 

  • Rajapakse S, Byrne DH, Zhang L, Anderson N, Arumuganathan K, Ballard RE (2001) Two genetic linkage maps of tetraploid roses. Theor Appl Genet 103:575–583

    Google Scholar 

  • Slabaugh MB, Huestis GM, Leonard J, Holloway JL, Rosato C, Hongtrakul V, Martini N, Toepfer R, Voetz M, Schell J, Knapp SJ (1997) Sequence-based genetic markers for genes and gene families: single-strand conformational polymorphisms for the fatty acid synthesis genes of Cuphea. Theor Appl Genet 94:400–408

    Article  Google Scholar 

  • Sosinski B, Sossey Alaoui K, Rajapakse S, Glassmoyer K, Ballard RE, Abbott AG, Lu ZX, Baird WV, Reighard G, Tabb A, Scorza R, Monet R (1998) Use of AFLP and RFLP markers to create a combined linkage map in peach [Prunus persica (L) Batsch] for use in marker assisted selection. Acta Hortic 465:61–68

    Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Vallad G, Rivkin M, Vallejos C, McClean P (2001) Cloning and homology modelling of a Pto-like protein kinase family of common bean (Phaseolus vulgaris L). Theor Appl Genet 103:1046–1058

    Article  Google Scholar 

  • Van der Linden G, Wouters D, Milhalka V, Kochieva ES, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, pp 1–51

    Google Scholar 

  • Von Malek B, Weber WE, Debener T (2000) Identification of molecular markers linked to Rdr1, a gene conferring resistance to blackspot in rose. Theor Appl Genet 101:977–983

    Article  Google Scholar 

  • Voorrips RE (2001) MapChart version 2.0: Windows software for the graphic presentation of linkage maps and QTLs. Plant Research International, Wageningen, pp 1–22

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amount in roses. Ann Bot 85:557–561

    Article  Google Scholar 

  • Zhang L (2003) Genetic linkage mapping in tetraploid and diploid rose. Dissertation, Clemson University, pp 1–160

Download references

Acknowledgements

We would like to thank Danny Esselink, Dr. Theo van der Lee and Dr. Gerard van der Linden for their support. Dr. Sjaak van Heusden and Dr. Theo Prins are acknowledged for critically reviewing the manuscript. This work was financed by the Netherlands Agency for Energy and the Environment (NOVEM), the Dutch Product Board for Horticulture (PT) and the companies Plant Research International, Terra Nigra, Agriom, and Poulsen Roser Aps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Dolstra.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Denneboom, C., Hattendorf, A. et al. Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110, 766–777 (2005). https://doi.org/10.1007/s00122-004-1903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1903-6

Keywords

Navigation