Skip to main content
Log in

Tightly linked di- and tri-nucleotide microsatellites do not evolve in complete independence: evidence from linked (TA) n and (TAA) n microsatellites of chickpea (Cicer arietinum L.)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In order to understand the dynamics of microsatellite evolution, we have studied allelic variation at a closely linked (TA) n and (TAA) n microsatellite loci in 114 land races of chickpea (Cicer arietinum L.), sampled worldwide. These two loci are separated by 27 bp. The two loci showed a very high degree of polymorphism and hence the combined length with the genetic diversity of 0.93, 0.90 and 0.98 for (TAA) n , (TA) n and the combined length, respectively. Using the variation data at the linked loci, a standardized index of linkage disequilibrium was also computed (I S A =0.092), which tests the null hypothesis of no linkage and was significant, indicating the presence of linkage disequilibrium. Furthermore, the dynamics of allelic variation showed that there is a threshold combined length, below which both (TAA) n and (TA) n loci evolve independently, and above which, if one locus increase in size, the other closely linked locus has a tendency to decrease its size and vice versa, without change in the overall ratio of (TAA) n and (TA) n allele sizes at the region. This result indicates that there are processes in the cell, which ‘read’ the combined size of the two loci both for proportion and length and determine the direction of tightly linked di- and tri-nucleotide repeat evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5a,b

Similar content being viewed by others

References

  • Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283-1292

    Article  CAS  Google Scholar 

  • Baum M, Weeden NF, Muehlbauer F, Kahl G, Udupa SM, Eujayl I, Weigand F, Harrabi, M, Bouznad Z (2000) Marker technology for plant breeding. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 421–427

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    CAS  PubMed  Google Scholar 

  • Clark AG, Weiss KM, Nickerson DA, Taylor SL, Buchanan A, Stengård J, Salomaa V, Vartiainen E, Perola M, Boerwinkle E, Sing CF (1998) Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am J Hum Genet 63:595–612

    CAS  PubMed  Google Scholar 

  • Dermitzakis ET, Clark AG, Batargias C, Magoulas A, Zouros E (1998) Negative covariance suggests mutation bias in a two-locus microsatellite system in the fish Sparus aurata. Genetics 150:1567–1575

    CAS  PubMed  Google Scholar 

  • Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, Richards CS, Ward PA, Nelson DL (1994) Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genet 8:88–94

    CAS  PubMed  Google Scholar 

  • Feldman MW, Bergman A, Pollock DD, Goldstein DB (1997) Microsatellite genetic distances with range constraints: analytic description and problems of estimation. Genetics 145:207–216

    CAS  PubMed  Google Scholar 

  • Goodfellow PN (1992) Variation is now the theme. Nature 359:777–778

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Harker N, Rampling LR, Shariflou MR, Hayden MJ, Holton TA, Morell MK, Sharp PJ, Henry RJ, Edwards KJ (2001) Microsatellites as markers for Australian wheat improvement. Aust J Agric Res 52:1121–1130

    CAS  Google Scholar 

  • Haubold B, Hudson RR (2000) LIAN 3.0: detecting disequilibrium in multilocus data. Bioinformatics 16:847–848

    Article  CAS  PubMed  Google Scholar 

  • Haubold B, Travisano M, Rainey PB, Hudson RR (1998) Detecting linkage disequilibrium in bacterial populations. Genetics 150:1341–1348

    CAS  PubMed  Google Scholar 

  • Haubold B, Kroymann J, Ratzka A, Mitchell-Olds T, Wiehe T (2002) Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. Genetics 161:1269–1278

    CAS  PubMed  Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite-site markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    PubMed  Google Scholar 

  • Kimmel M, Chakraborty R (1996) Measures of variation at DNA repeat loci under a general stepwise mutation model. Theor Pop Biol 50:345–67

    Article  CAS  Google Scholar 

  • Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778

    Article  CAS  PubMed  Google Scholar 

  • Kruglyak S, Durrett RT, Schug MD, Aquadro CF (2000) Distribution and abundance of microsatellites in the yeast genome can be explained by a balance between slippage events and point mutations. Mol Biol Evol 17:1210–1219

    CAS  PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand misrepairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    CAS  PubMed  Google Scholar 

  • Lin J-Z, Morrell PL, Clegg MT (2002) The influence of linkage and inbreeding on patterns of nucleotide sequence diversity at duplicate alcohol dehydrogenase loci in wild Barley (Hordeum vulgare ssp. spontaneum). Genetics 162:2007–2015

    CAS  PubMed  Google Scholar 

  • Malhotra RS, Singh KB (1986) Natural cross pollination in chickpea. Int Chickpea Newslett 14:4–5

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez G J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    CAS  PubMed  Google Scholar 

  • Messier W, Li S-H, Stewart C-B (1996) The birth of microsatellite. Nature 381:483

    CAS  PubMed  Google Scholar 

  • Moran PA (1975) Wandering distributions and the electrophoretic profile. Theor Pop Biol 8:318–30

    CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Russell JR, Booth A, Fuller JD, Baum M, Ceccarelli S, Grando S, Powell W (2003) Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan. Theor Appl Genet DOI 10.1007/s00122-003-1261-9

  • Schug MD, Mackay TFC, Aquadro CF (1997) Low mutation rates of microsatellites in Drosophila melanogaster. Nature Genet 15:99–102

    CAS  PubMed  Google Scholar 

  • Singh KB (1987) Chickpea breeding, In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Willingford, Oxford, UK, pp 127–162

  • Singh KB, Holly L, Bejiga G (1991) A catalog of kabuli chickpea germplasm. ICARDA, Aleppo, Syria

  • Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    CAS  Google Scholar 

  • Tautz D, Schlötterer C (1994) Simple sequences. Curr Opin Genet Dev 4:832–837

    CAS  PubMed  Google Scholar 

  • Udupa SM, Baum M (2001) High mutation rate and mutational bias at (TAA) n microsatellite loci of chickpea (Cicer arietinum L.). Mol Genet Genomics 265:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202

    CAS  PubMed  Google Scholar 

  • Udupa SM, Weigand F, Saxena MC, Kahl G (1998) Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chickpea. Theor Appl Genet 97:299–307

    Article  CAS  Google Scholar 

  • Udupa SM, Robertson LD, Weigand F, Baum M, Kahl G (1999) Allelic variation at (TAA) n microsatellite loci in a world collection of chickpea (Cicer arietinum L.) germplasm. Mol Gen Genet 261:354–363

    Google Scholar 

  • Valdes AM, Slatkin M, Freimer NB (1993) Allelic frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749

    CAS  PubMed  Google Scholar 

  • Watterson GA, Guess HA (1977) Is the most frequent allele the oldest? Theor Pop Biol 11:141–60

    CAS  Google Scholar 

  • Weber JL (1990) Informativeness of human (dC-dA) n ·(dG-dT) n polymorphisms. Genomics 7:524–530

    Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    CAS  PubMed  Google Scholar 

  • Xu X, Peng M, Fang Z (2000) The direction of microsatellite mutations is dependent upon allele length. Nature Genet 24:396–399

    CAS  PubMed  Google Scholar 

  • Zhivotovsky LA, Feldman MW (1995) Microsatellite variability and genetic distances. Proc Natl Acad Sci USA 92:11549–11552

    CAS  PubMed  Google Scholar 

  • Zhivotovsky LA, Feldman MW, Grishechkin SA (1997) Biased mutations and microsatellite variation. Mol Biol Evol 14:926–933

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ research was supported by grants to ICARDA from the German Federal Ministry of Economic Cooperation and Development (BMZ, Bonn, Germany) and the Arab Fund for Economic and Social Development (AFESD, Kuwait).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baum.

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udupa, S.M., Malhotra, R.S. & Baum, M. Tightly linked di- and tri-nucleotide microsatellites do not evolve in complete independence: evidence from linked (TA) n and (TAA) n microsatellites of chickpea (Cicer arietinum L.). Theor Appl Genet 108, 550–557 (2004). https://doi.org/10.1007/s00122-003-1458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1458-y

Keywords

Navigation