Skip to main content
Log in

Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum)

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract.

Durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, genomes AB) is an economically important cereal used as the raw material to make pasta and semolina. In this paper we present the construction and characterization of a bacterial artificial chromosome (BAC) library of tetraploid durum wheat cv. Langdon. This variety was selected because of the availability of substitution lines that facilitate the assignment of BACs to the A and B genome. The selected Langdon line has a 30-cM segment of chromosome 6BS from T. turgidum ssp. dicoccoides carrying a gene for high grain protein content, the target of a positional cloning effort in our laboratory. A total of 516,096 clones were organized in 1,344 384-well plates and blotted on 28 high-density filters. Ninety-eight percent of these clones had wheat DNA inserts (0.3% chloroplast DNA, 1.4% empty clones and 0.3% empty wells). The average insert size of 500 randomly selected BAC clones was 131 kb, resulting in a coverage of 5.1-fold genome equivalents for each of the two genomes, and a 99.4% probability of recovering any gene from each of the two genomes of durum wheat. Six known copy-number probes were used to validate this theoretical coverage and gave an estimated coverage of 5.8-fold genome equivalents. Screening of the library with 11 probes related to grain storage proteins and starch biosynthesis showed that the library contains several clones for each of these genes, confirming the value of the library in characterizing the organization of these important gene families. In addition, characterization of fingerprints from colinear BACs from the A and B genomes showed a large differentiation between the A and B genomes. This library will be a useful tool for evolutionary studies in one of the best characterized polyploid systems and a source of valuable genes for wheat. Clones and high-density filters can be requested at http://agronomy.ucdavis.edu/Dubcovsky/BAC-library/BAC_Langdon.htm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Anderson OD, Greene FC (1997) The alpha-gliadin gene family.II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Anderson OD, Greene FC, Yip RE, Halford NG, Shewry PR, Malpica-Romero J-M (1989) Nucleotide sequences of the two high-molecular-weight glutenin genes from the D genome of hexaploid wheat, Triticum aestivum L. cv. Cheyenne. Nucleic Acids Res 17:461–462

    CAS  PubMed  Google Scholar 

  • Anderson OD, AbrahamPierce FA, Tam A (1998) Conservation in wheat high-molecular-weight glutenin gene promoter sequences: comparisons among loci and among alleles of the Glu-B1-1 locus. Theor Appl Genet 96:568–576

    CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, DeGiovanni C, Dovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    Article  CAS  Google Scholar 

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812

    CAS  PubMed  Google Scholar 

  • Cassidy BG, Dvorak J (1991) Molecular characterization of a low-molecular-weight glutenin cDNA clone from Triticum durum. Theor Appl Genet 81:653–660

    CAS  Google Scholar 

  • Chen FQ, Foolad MR (1997) Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol 35:821–831

    CAS  PubMed  Google Scholar 

  • Chen M, SanMiguel P, Oliveira ACd, Woo S-S, Zhang H, Wing RA, Bennetzen JL (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci USA 94:3431–3435

    CAS  PubMed  Google Scholar 

  • Choi S, Creelman RA, Mullet JE, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana. Plant Mol Biol Rep 13:124–128

    Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9:91–100

    CAS  PubMed  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567

    CAS  PubMed  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW, Marek LF, Danesh D, Denny R, Shoemaker RC, Matthews BF, Jarvik T, Young ND (1999) Targeted isolation of simple sequence repeat markers through the use of bacterial artificial chromosomes. Theor Appl Genet 98:919–928

    CAS  Google Scholar 

  • Dubcovsky J, Galvez AF, Dvorak J (1994) Comparison of the genetic organization of the early salt stress response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet 87:957–964

    CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel P, Busso C, Yan L, Shiloff B, Bennetzen J (2001) Comparative sequence analysis of colinear barley and rice BACs. Plant Physiol 125:1342–1353

    CAS  PubMed  Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    PubMed  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B (1988) Apparent sources of the A genomes of wheats inferred from the polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    CAS  Google Scholar 

  • Dvorak J, di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    CAS  Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res 13:7327–7339

    PubMed  Google Scholar 

  • Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QY, Devos KM (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genetic Symp. China Agricultural Scientech Press, Beijing, pp 29–40

  • Gao M, Chibbar RN (2000) Isolation, characterization, and expression analysis of starch synthase IIa cDNA from wheat (Triticum aestivum L.). Genome 43:768–775

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  Google Scholar 

  • Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228

    Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping a QTL for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524

    CAS  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:13–14

    Google Scholar 

  • Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R, Morell MK (1999a) Cloning and characterization of a gene encoding wheat starch synthase I. Theor Appl Genet 98:1208–1216

    CAS  Google Scholar 

  • Li ZY, Chu XS, Mouille G, Yan LL, Kosar-Hashemi B, Hey S, Napier J, Shewry P, Clarke B, Appels R, Morell MK, Rahman S (1999b) The localization and expression of the class II starch synthases of wheat. Plant Physiol 120:1147–1155

    CAS  PubMed  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogihara Y (2000) Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J 23:687–695

    CAS  PubMed  Google Scholar 

  • Luo MZ, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Weining S, Sharp PJ, Liu C (2000) Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res 28:e106

    Article  CAS  PubMed  Google Scholar 

  • Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, LaHillier LW, McPherson JD, Waterston RH (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7:1072–1084

    CAS  PubMed  Google Scholar 

  • Morell MK, Rahman S, Regina A, Appels R, Li Z (2001) Wheat starch biosynthesis. Euphytica 119:55–58

    Article  CAS  Google Scholar 

  • Moullet O, Zhang H-B, Lagudah ES (1999) Construction and characterization of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Article  Google Scholar 

  • Nachit MM, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    CAS  Google Scholar 

  • Nair RB, Baga M, Scoles GJ, Kartha KK, Chibbar RN (1997) Isolation, characterization and expression analysis of a starch branching enzyme II cDNA from wheat. Plant Sci 122:153–163

    Article  CAS  Google Scholar 

  • Ogihara Y, Tsunewaki K (2000) Chinese Spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Yokohama City University and Fukui Prefetural University, Japan

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    CAS  PubMed  Google Scholar 

  • Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062

    CAS  PubMed  Google Scholar 

  • Payne PI, Corfield KG, Holt LM, Blackman JA (1981) Correlations between the inheritance of certain high molecular weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Agric Sci 32:51–60

    CAS  Google Scholar 

  • Peng MS, Hucl P, Chibbar RN (2001) Isolation, characterization and expression analysis of starch synthase I from wheat (Triticum aestivum L.). Plant Sci 161:1055–1062

    Article  CAS  Google Scholar 

  • Rahman S, Abrahams S, Abbott D, Mukai Y, Samuel M, Morell M, Appels R (1997) A complex arrangement of genes at a starch branching enzyme I locus in the D-genome donor of wheat. Genome 40:465–474

    CAS  PubMed  Google Scholar 

  • Rahman S, Li Z, Abrahams S, Abbott D, Appels R, Morell MK (1999) Characterisation of a gene encoding wheat endosperm starch branching enzyme-I. Theor Appl Genet 98:156–163

    CAS  Google Scholar 

  • Rahman S, Regina A, Li ZY, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell MK (2001) Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from the wheat D genome donor Aegilops tauschii. Plant Physiol 125:1314–1324

    CAS  PubMed  Google Scholar 

  • Sabelli PA, Shewry PR (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor Appl Genet 83:209–216

    Google Scholar 

  • SanMiguel P, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A. Functional Integrative Genomics 2:70–80

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    CAS  PubMed  Google Scholar 

  • Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    CAS  PubMed  Google Scholar 

  • Singh NK, Donovan GR, Carpenter HC, Skerritt JH, Langridge P (1993) Isolation and characterization of wheat triticin cDNA revealing a lysine-rich repetitive domain. Plant Mol Biol 22:227–237

    CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Martin GB (1995) Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet 11:63–68

    CAS  PubMed  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z (1999) Colinearity and its exceptions in orthologous Adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    CAS  PubMed  Google Scholar 

  • Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    CAS  PubMed  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    CAS  PubMed  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

  • Zhang H-B, Choi S, Woo SS, Li Z, Wing RA (1996) Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol Breed 2:11–24

    CAS  Google Scholar 

Download references

Acknowledgements.

This research was supported by Research Grant No. US-3224-01R from BARD (The United States -Israel Binational Agricultural Research and Development Fund), by INRA-France and by USDA-Albany. The authors thank Dr R. N. Chibbar for the screening of the Langdon BAC library with the genes involved in starch biosynthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dubcovsky.

Additional information

Communicated by P. Langridge

The first two authors contributed equally to the investigation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cenci, A., Chantret, N., Kong, X. et al. Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107, 931–939 (2003). https://doi.org/10.1007/s00122-003-1331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1331-z

Keywords.

Navigation