Skip to main content
Log in

Tuberöse-Sklerose-Komplex

Tuberous sclerosis complex

  • Leitthema
  • Published:
Die Radiologie Aims and scope Submit manuscript

Zusammenfassung

Klinischer Hintergrund

Der Tuberöse-Sklerose-Komplex (TSC) ist eine Phakomatose und zählt zu den Tumorprädispositionssyndromen. Als genetisch bedingte Multisystemerkrankung treten in einem breiten Spektrum Veränderungen in Gehirn, Herz, Haut, Nieren und Lunge auf.

Fragestellung

Welches Management verschiedener bildgebender Methoden ist zur Überwachung von TSC-Patienten entsprechend aktueller internationaler Empfehlung erforderlich?

Material und Methoden

Häufige Befunde bei TSC sind im Zentralnervensystem (ZNS) kortikale/subkortikale Tubera, subependymale Noduli und Riesenzellastrozytome, im Herzen Rhabdomyome und in den Nieren Zysten sowie Angiomyolipome. MRT-Untersuchungen von Kopf und Nieren sowie der abdominale Ultraschall sind die beiden bildgebenden Verfahren der Wahl, die einen sehr guten Weichteilkontrast haben und frei von schädigender Röntgenstrahlung sind.

Ergebnisse

Durch die multimodale Anwendung von standardmäßigen und funktionellen MRT-Sequenzen können Art und Dignität sowie Größe und Morphe von Veränderungen im Rahmen der TSC sicher bestimmt werden. Der abdominale Ultraschall kann durch hochauflösende Schallköpfe schnell und sicher auch kleinste Veränderungen in den Nieren nachweisen.

Schlussfolgerung

Regelmäßige Verlaufskontrollen bei Patienten mit TSC mit Hilfe von MRT und Ultraschall sind erforderlich, um Komplikationen frühzeitig zu erkennen, für die Planung einer individuellen Therapie und zur Steuerung der lebenslangen Betreuung.

Abstract

Clinical background

Tuberous sclerosis complex (TSC) is a phakomatosis and is a tumor predisposition syndrome. As a genetic multisystem disease, patients present with a broad range of changes in the brain, heart, skin, kidneys, and lungs.

Objectives

Which imaging modalities are required to monitor TSC patients according to current international recommendations?

Materials and methods

Common findings in TSC are cortical tubers, subependymal nodules, and giant cell astrocytomas in the central nervous system (CNS), rhabdomyomas in the heart, and cysts and angiomyolipomas in the kidneys. Magnetic resonance imaging (MRI) of the brain and kidneys and abdominal ultrasound are the imaging modalities of choice, due to the very good soft tissue contrast and lack of X‑ray radiation.

Results

Using standard and functional MRI sequences in a multimodal approach, the type, malignancy, size, and morphology of changes in TSC can be reliably determined. Abdominal ultrasound using high-resolution transducers can be used to rapidly and reliably detect even the smallest changes in the kidneys.

Conclusion

Regular follow-up of patients with TSC using MRI and ultrasound is necessary for early detection of complications, for planning individualized therapy, and for optimal lifelong care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Awmf (Register Nr. 166/003) https://www.awmf.org Nierenzysten-zystische-Nierenerkrankungen-Kinder Zugriff am 15. Mai 2022. In: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) – Ständige Kommission Leitlinien p1–40

  2. Baron Y, Barkovich AJ (1999) MR imaging of tuberous sclerosis in neonates and young infants. AJNR Am J Neuroradiol 20:907–916

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baskin HJ Jr. (2008) The pathogenesis and imaging of the tuberous sclerosis complex. Pediatr Radiol 38:936–952

    Article  PubMed  Google Scholar 

  4. Bissler JJ, Kingswood JC, Radzikowska E et al (2013) Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381:817–824

    Article  CAS  PubMed  Google Scholar 

  5. Casper KA, Donnelly LF, Chen B et al (2002) Tuberous sclerosis complex: renal imaging findings. Radiology 225:451–456

    Article  PubMed  Google Scholar 

  6. Champagnac J, Melodelima C, Martinelli T et al (2016) Microaneurysms in renal angiomyolipomas: Can clinical and computed tomography features predict their presence and size? Diagn Interv Imaging 97:321–326

    Article  CAS  PubMed  Google Scholar 

  7. Chan JP, Back SJ, Vatsky S et al (2021) Utility of contrast-enhanced ultrasound for solid mass surveillance and characterization in children with tuberous sclerosis complex: an initial experience. Pediatr Nephrol 36:1775–1784

    Article  PubMed  Google Scholar 

  8. Crino PB (2013) Evolving neurobiology of tuberous sclerosis complex. Acta Neuropathol 125:317–332

    Article  PubMed  Google Scholar 

  9. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  CAS  PubMed  Google Scholar 

  10. Curatolo P, Moavero R, Van Scheppingen J et al (2018) mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother 18:185–201

    Article  CAS  PubMed  Google Scholar 

  11. Davis PE, Filip-Dhima R, Sideridis G et al (2017) Presentation and diagnosis of tuberous sclerosis complex in infants. Pediatrics 140:1–11

    Article  Google Scholar 

  12. De Vries PJ, Whittemore VH, Leclezio L et al (2015) Tuberous sclerosis associated neuropsychiatric disorders (TAND) and the TAND Checklist. Pediatr Neurol 52:25–35

    Article  PubMed  Google Scholar 

  13. Deistung A, Mentzel HJ, Rauscher A et al (2006) Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI). Z Med Phys 16:261–267

    Article  PubMed  Google Scholar 

  14. Dimario FJ, Sahin M, Ebrahimi-Fakhari D (2015) Tuberous sclerosis complex. Pediatr Clin North Am 62:633–648

    Article  PubMed  Google Scholar 

  15. Ebrahimi-Fakhari D, Mann LL, Poryo M et al (2018) Incidence of tuberous sclerosis and age at first diagnosis: new data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis 13:117–117

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gaillard AL, Crombe A, Jecko V et al (2020) Magnetic resonance imaging diagnosis of subependymal giant cell astrocytomas in follow-up of children with tuberous sclerosis complex: should we always use contrast enhancement? Pediatr Radiol 50:1397–1408

    Article  PubMed  Google Scholar 

  17. Gallagher A, Grant EP, Madan N et al (2010) MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 257:1373–1381

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goergen SK, Fahey MC (2022) Prenatal MR imaging phenotype of fetuses with tuberous sclerosis: an institutional case series and literature review. AJNR Am J Neuroradiol 43:633–638

    Article  CAS  PubMed  Google Scholar 

  19. Israel GM, Hindman N, Hecht E et al (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol 184:1868–1872

    Article  PubMed  Google Scholar 

  20. Jesmanas S, Norvainyte K, Gleizniene R et al (2018) Different MRI-defined tuber types in tuberous sclerosis complex: Quantitative evaluation and association with disease manifestations. Brain Dev 40:196–204

    Article  PubMed  Google Scholar 

  21. Karadag D, Mentzel HJ, Gullmar D et al (2005) Diffusion tensor imaging in children and adolescents with tuberous sclerosis. Pediatr Radiol 35:980–983

    Article  PubMed  Google Scholar 

  22. Kingswood JC, D’augères GB, Belousova E et al (2017) TuberOus SClerosis registry to increase disease Awareness (TOSCA)—baseline data on 2093 patients. Orphanet J Rare Dis 12(1):2.1750–1172. https://doi.org/10.1186/s13023-016-0553-5

  23. Mccarthy C, Gupta N, Johnson SR et al (2021) Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management. Lancet Respir Med 9:1313–1327

    Article  CAS  PubMed  Google Scholar 

  24. Morin CE, Morin NP, Franz DN et al (2018) Thoracoabdominal imaging of tuberous sclerosis. Pediatr Radiol 48:1307–1323

    Article  PubMed  Google Scholar 

  25. Niwa T, Aida N, Fujii Y et al (2015) Age-related changes of susceptibility-weighted imaging in subependymal nodules of neonates and children with tuberous sclerosis complex. Brain Dev 37:967–973

    Article  PubMed  Google Scholar 

  26. Northrup H, Aronow ME, Bebin EM et al (2021) Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol 123:50–66

    Article  PubMed  Google Scholar 

  27. Northrup H, Krueger DA, Northrup H et al (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol 49:243–254

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van Eeghen AM, Teran LO, Johnson J et al (2013) The neuroanatomical phenotype of tuberous sclerosis complex: focus on radial migration lines. Neuroradiology 55:1007–1014

    Article  PubMed  Google Scholar 

  29. Wang C, Li X, Peng L et al (2018) An update on recent developments in rupture of renal angiomyolipoma. Medicine 97:1–7

    Google Scholar 

  30. Wang MX, Segaran N, Bhalla S et al (2021) Tuberous sclerosis: current update. Radiographics 41:1992–2010

    Article  PubMed  Google Scholar 

  31. Yapici Z, Dörtcan N, Baykan BB et al (2007) Neurological aspects of tuberous sclerosis in relation to MRI/MR spectroscopy findings in children with epilepsy. Neurol Res 29:449–454

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Glutig.

Ethics declarations

Interessenkonflikt

K. Glutig, R. Husain, D. Renz, U. John-Kroegel und H.-J. Mentzel geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glutig, K., Husain, R., Renz, D. et al. Tuberöse-Sklerose-Komplex. Radiologie 62, 1058–1066 (2022). https://doi.org/10.1007/s00117-022-01053-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-022-01053-z

Schlüsselwörter

Keywords

Navigation