Skip to main content
Log in

Multimodale, parametrische und genetische Brustbildgebung

Multimodal, multiparametric and genetic breast imaging

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die multiparametrische Magnetresonanztomographie (MRT) zielt auf die Darstellung, Beschreibung und Quantifizierung biologischer, physiologischer und pathologischer Prozesse auf zellulärer und molekularer Ebene ab und liefert wertvolle Informationen über die Schlüsselprozesse in der Krebsentstehung und -progression. „Omics“-Strategien (Genomics, Transcriptomics, Proteomics, Metabolomics) kommen heute in vielen Bereichen der Onkologie zum Einsatz.

Radiologische Standardverfahren

Die multiparametrische MRT der Brust umfasst derzeit die T2- und diffusionsgewichtete Bildgebung sowie die dynamische kontrastmittelverstärkte MRT (DCE-MRT).

Methodische Innovationen

Weitere Parameter, wie Protonen- Magnetresonanz Spektroskopie (MRS), „chemical exchange saturation transfer“ (CEST), die „blood oxygen level-dependent“ (BOLD), die hyperpolarisierte (HP) MRT oder die Lipid-MRS sind derzeit in Entwicklung und werden in der Brustkrebsdiagnostik evaluiert.

Bewertung

Radiogenomics ist eine neue Richtung in der medizinischen Wissenschaft, die durch signifikante Fortschritte in Bildgebungs- und Bildanalysemethoden sowie die Entwicklung von Techniken zur Extraktion und Korrelation verschiedenster Bildgebungsparameter mit „Omics“-Daten ermöglicht wurde. Radiogenomics hat das Ziel, Bildgebungscharakteristika (Phenotypen) mit Genexpressionsmustern, Genmutationen und weiteren genomassoziierten Eigenschaften zu korrelieren. Quantitative und qualitative Imaging-Biomarker erlauben Einblicke in die komplexe Tumorbiologie. Erste Ergebnisse legen nahe, dass Radiogemics eine wichtige Rolle in Diagnostik, Prognose und Behandlung von Brustkrebs spielen werden.

Empfehlung für die Praxis

Dieser Beitrag gibt einen Überblick über den derzeitigen Stand von Radiogenomics der Brust und zukünftige Anwendungen und Herausforderungen.

Abstract

Clinical/methodological issue

Multiparametric magnetic resonance imaging (MRI) aims to visualize and quantify biological, physiological and pathological processes at the cellular and molecular level and provides valuable information about key processes in cancer development and progression. “Omics” strategies (genomics, transcriptomics, proteomics, metabolomics) have many uses in oncology.

Standard radiological methods

Multiparametric MRI of the breast currently includes T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI (DCE-MRI)

Methodological innovations

Additional parameters such as proton magetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), blood oxygen level-dependent (BOLD), hyperpolarized (HP) MRI or lipid MRS are currently being developed and are being evaluated in breast cancer diagnostics.

Achievements

Radiogenomics is a new direction in medical science that has been made possible by significant advances in imaging and image analysis methods, as well as the development of techniques to extract and correlate various imaging parameters with “omics” data. The aim of radiogenomics is to correlate imaging characteristics (phenotypes) with gene expression patterns, gene mutations and other genome-associated properties and is the evolution of the correlation between radiology and pathology from the anatomical–histological to the molecular level. Quantitative and qualitative imaging biomarkers provide insights into the complex tumor biology. Initial results suggest that radiogemics will play an important role in the diagnosis, prognosis, and treatment of breast cancer.

Practical recommendations

This article provides an overview of the current state of radiogenomics of the breast and future applications and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. El Naqa I, Napel S, Zaidi H (2018) Radiogenomics is the future of treatment response assessment in clinical oncology. Med Phys 45(10):4325–4328

    PubMed  Google Scholar 

  2. Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70(2):232–241

    PubMed  Google Scholar 

  3. Bai HX et al (2016) Imaging genomics in cancer research: limitations and promises. Br J Radiol 89(1061):20151030

    PubMed  PubMed Central  Google Scholar 

  4. Lambin P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446

    PubMed  PubMed Central  Google Scholar 

  5. Sala E et al (2017) Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 72(1):3–10

    CAS  PubMed  Google Scholar 

  6. Kumar V et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248

    PubMed  PubMed Central  Google Scholar 

  7. Pinker K et al (2018) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 47(3):604–620

    PubMed  Google Scholar 

  8. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577

    PubMed  Google Scholar 

  9. Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12(8):862–866

    PubMed  Google Scholar 

  10. European Society of Radiology (ESR) (2015) Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 6(2):141–155

    Google Scholar 

  11. Kuo MD, Jamshidi N (2014) Behind the numbers: Decoding molecular phenotypes with radiogenomics—guiding principles and technical considerations. Radiology 270(2):320–325

    PubMed  Google Scholar 

  12. Bigos KL, Weinberger DR (2010) Imaging genetics—days of future past. Neuroimage 53(3):804–809

    CAS  PubMed  Google Scholar 

  13. Stoyanova R et al (2016) Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget 7(33):53362–53376

    PubMed  PubMed Central  Google Scholar 

  14. Renard-Penna R et al (2015) Multiparametric magnetic resonance imaging predicts postoperative pathology but misses aggressive prostate cancers as assessed by cell cycle progression score. J Urol 194(6):1617–1623

    PubMed  Google Scholar 

  15. Mehta S et al (2010) Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2(2):125–148

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldhirsch A et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldhirsch A et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cancer Genome Atlas, N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Google Scholar 

  19. Huber KE, Carey LA, Wazer DE (2009) Breast cancer molecular subtypes in patients with locally advanced disease: impact on prognosis, patterns of recurrence, and response to therapy. Semin Radiat Oncol 19(4):204–210

    PubMed  Google Scholar 

  20. Guiu S et al (2012) Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol 23(12):2997–3006

    CAS  PubMed  Google Scholar 

  21. Pinker K et al (2013) Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the “Breast Imaging Reporting and Data System” for multiparametric 3‑T imaging of breast lesions. Eur Radiol 23(7):1791–1802

    CAS  PubMed  Google Scholar 

  22. Yamamoto S et al (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am J Roentgenol 199(3):654–663

    PubMed  Google Scholar 

  23. Yamamoto S et al (2015) Breast cancer: radiogenomic biomarker reveals associations among dynamic contrast-enhanced MR imaging, long noncoding RNA, and metastasis. Radiology 275(2):384–392

    PubMed  Google Scholar 

  24. Zhu Y et al (2015) Deciphering genomic underpinnings of quantitative MRI-based radiomic phenotypes of invasive breast carcinoma. Sci Rep 5:17787

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Elias SG et al (2014) Imaging features of HER2 overexpression in breast cancer: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 23(8):1464–1483

    CAS  PubMed  Google Scholar 

  26. Grimm LJ et al (2015) Can breast cancer molecular subtype help to select patients for preoperative MR imaging? Radiology 274(2):352–358

    PubMed  Google Scholar 

  27. Uematsu T (2011) MR imaging of triple-negative breast cancer. Breast Cancer 18(3):161–164

    PubMed  Google Scholar 

  28. Kim EJ et al (2015) Histogram analysis of apparent diffusion coefficient at 3.0t: correlation with prognostic factors and subtypes of invasive ductal carcinoma. J Magn Reson Imaging 42(6):1666–1678

    PubMed  Google Scholar 

  29. Martincich L et al (2012) Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol 22(7):1519–1528

    PubMed  Google Scholar 

  30. Park SH, Choi HY, Hahn SY (2015) Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla. J Magn Reson Imaging 41(1):175–182

    CAS  PubMed  Google Scholar 

  31. Mazurowski MA et al (2014) Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273(2):365–372

    PubMed  Google Scholar 

  32. Grimm LJ, Zhang J, Mazurowski MA (2015) Computational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J Magn Reson Imaging 42(4):902–907

    PubMed  Google Scholar 

  33. Grimm LJ et al (2017) Relationships between MRI breast imaging-reporting and data system (BI-RADS) lexicon descriptors and breast cancer molecular subtypes: internal enhancement is associated with luminal B subtype. Breast J 23(5):579–582

    PubMed  Google Scholar 

  34. Yamaguchi K et al (2015) Intratumoral heterogeneity of the distribution of kinetic parameters in breast cancer: comparison based on the molecular subtypes of invasive breast cancer. Breast Cancer 22(5):496–502

    PubMed  Google Scholar 

  35. Leithner D et al (2019) Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results. Breast Cancer Res 21(1):106. https://doi.org/10.1186/s13058-019-1187-z

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ashraf AB et al (2014) Identification of intrinsic imaging phenotypes for breast cancer tumors: preliminary associations with gene expression profiles. Radiology 272(2):374–384

    PubMed  Google Scholar 

  37. Siamakpour-Reihani S et al (2015) Genomic profiling in locally advanced and inflammatory breast cancer and its link to DCE-MRI and overall survival. Int J Hyperthermia 31(4):386–395

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sutton EJ et al (2015) Breast cancer subtype intertumor heterogeneity: MRI-based features predict results of a genomic assay. J Magn Reson Imaging 42(5):1398–1406

    PubMed  PubMed Central  Google Scholar 

  39. Fernandez-Navarro P et al (2015) Genome wide association study identifies a novel putative mammographic density locus at 1q12-q21. Int J Cancer 136(10):2427–2436

    CAS  PubMed  Google Scholar 

  40. Li H et al (2014) Pilot study demonstrating potential association between breast cancer image-based risk phenotypes and genomic biomarkers. Med Phys 41(3):31917

    PubMed  PubMed Central  Google Scholar 

  41. Li H et al (2016) MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of mammaprint, Oncotype DX, and PAM50 gene assays. Radiology 281(2):382–391

    PubMed  Google Scholar 

  42. Wan T et al (2016) A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores. Sci Rep 6:21394

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dialani V et al (2016) Prediction of low versus high recurrence scores in estrogen receptor-positive, lymph node-negative invasive breast cancer on the basis of radiologic-pathologic features: comparison with Oncotype DX test recurrence scores. Radiology 280(2):370–378

    PubMed  Google Scholar 

  44. Mehta S et al (2016) Radiogenomics monitoring in breast cancer identifies metabolism and immune checkpoints as early actionable mechanisms of resistance to anti-angiogenic treatment. EBioMedicine 10:109–116

    PubMed  PubMed Central  Google Scholar 

  45. Bitencourt AGV et al (2020) MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer. EBioMedicine 61:103042

    PubMed  PubMed Central  Google Scholar 

  46. Mahajan A, Deshpande SS, Thakur MH (2017) Diffusion magnetic resonance imaging: A molecular imaging tool caught between hope, hype and the real world of “personalized oncology”. World J Radiol 9(6):253–268

    PubMed  PubMed Central  Google Scholar 

  47. Zaric O et al (2016) Quantitative sodium MR imaging at 7 T: initial results and comparison with diffusion-weighted imaging in patients with breast tumors. Radiology 280(1):39–48

    PubMed  Google Scholar 

  48. Kogan F, Hariharan H, Reddy R (2013) Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications. Curr Radiol Rep 1(2):102–114

    PubMed  PubMed Central  Google Scholar 

  49. Jiang L et al (2013) Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study. J Magn Reson Imaging 37(5):1083–1092

    PubMed  Google Scholar 

  50. Telischak NA, Detre JA, Zaharchuk G (2015) Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging 41(5):1165–1180

    PubMed  Google Scholar 

  51. Leithner D, Bernard-Davila B, Martinez DF, Horvat JV, Jochelson MS, Marino MA, Avendano D, Ochoa-Albiztegui RE, Sutton EJ, Morris EA, Thakur SB, Pinker K (2020) Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes. Mol Imaging Biol 22(2):453–461. https://doi.org/10.1007/s11307-019-01383-w

    Article  PubMed  Google Scholar 

  52. Leithner D, Mayerhoefer ME, Martinez DF, Jochelson MS, Morris EA, Thakur SB, Pinker K (2020) Non-invasive assessment of breast cancer molecular subtypes with Multiparametric magnetic resonance imaging radiomics. J Clin Med 9(6):1853. https://doi.org/10.3390/jcm9061853

    Article  CAS  PubMed Central  Google Scholar 

Download references

Danksagung

Ich möchte meiner Lektorin Erdmuthe Pinker für ihre unentbehrliche jahrelange Unterstützung danken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Pinker MD PhD EBBI.

Ethics declarations

Interessenkonflikt

R. LoGullo, J. Horvat, J. Reiner und K. Pinker geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LoGullo, R., Horvat, J., Reiner, J. et al. Multimodale, parametrische und genetische Brustbildgebung. Radiologe 61, 183–191 (2021). https://doi.org/10.1007/s00117-020-00801-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-020-00801-3

Schlüsselwörter

Keywords

Navigation