Skip to main content
Log in

Personalisierte Onkologie

Personalized oncology

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches Problem

Innovative „Next-generation-sequencing“(NGS)-Technologien und umfangreiche genomische Untersuchungen großer Patientenkohorten haben zu vielversprechenden personalisierten Therapiestrategien auf der Basis molekularer Charakteristika individueller Tumorerkrankungen geführt.

Therapeutische Standardverfahren

Zielgerichtete Medikamente wie Tyrosinkinaseinhibitoren, Antikörper oder moderne Immuntherapien sind als Mono- oder Kombinationstherapien zur Behandlung zahlreicher hämatologischer und onkologischer Erkrankungen etabliert.

Neue Therapieverfahren

Die Vielzahl moderner zielgerichteter Therapeutika, die an verschiedensten Komponenten intrazellulärer Signalkaskaden und onkogen wirksamen Mechanismen ansetzen, und die technische Möglichkeit NGS-basierter molekularer Diagnostik machen eine auf genomischen Alterationen basierende, entitätenübergreifende Therapieauswahl und molekulare Stratifizierung innerhalb klinischer Studien möglich.

Diagnostik

Umfangreichere genetische Untersuchungen wie Panelsequenzierungen oder Ganzexom‑, Ganzgenom- und Transkriptomsequenzierungen werden in unterschiedlichem Ausmaß und insbesondere an akademischen Zentren durchgeführt.

Leistungsfähigkeit

Prinzipiell ist eine umfangreiche Charakterisierung, die neben DNA- und RNA-Sequenzierung auch epigenetische, metabolomische und proteomische Veränderungen berücksichtigt, wünschenswert. Eine flächendeckende klinische Anwendung integrativer, multidimensionaler genetischer Befunde ist derzeit allerdings noch nicht möglich.

Bewertung

Es bleibt abzuwarten, inwieweit sich eine umfangreiche molekulare Diagnostik in eine signifikante Prognoseverbesserung übersetzen lässt und als diagnostisches Werkzeug breitere Anwendung finden kann.

Empfehlung für die Praxis

Die Auswahl der im Einzelfall sinnvollsten molekularen Diagnostik sollte u. a. von den gegebenen Möglichkeiten und der klinischen Situation abhängig gemacht werden.

Abstract

Clinical issue

Innovative next generation sequencing (NGS) technologies and comprehensive sequencing investigations in large patient cohorts have paved the way for very promising personalized treatment strategies based on the molecular characteristics of individual tumors.

Standard treatment

Targeted therapies, such as tyrosine kinase inhibitors, antibodies and modern immunotherapeutic approaches are well established as monotherapy and combination therapy for many hematological and oncological malignancies.

Treatment innovations

A plethora of innovative therapies targeting various components of intracellular signaling cascades and effective mechanisms against oncogenes as well as the availability of NGS technologies enable personalized cancer treatment based on the molecular profiles of individual tumors and genetic stratification, within clinical trials.

Diagnostic work-up

Comprehensive genetic approaches including cancer gene panel sequencing, whole exome, whole genome and transcriptome sequencing are carried out to a varying extent and particularly in the academic setting.

Performance

Principally, a comprehensive characterization of tumors in addition to DNA and RNA sequencing that also incorporates epigenetic, metabolomic, and proteomic alterations would be desirable. A comprehensive clinical implementation of integrative, multidimensional genetic typing is, however, currently not possible.

Achievements

It remains to be demonstrated whether these approaches will translate into significantly better outcomes for patients and whether they can be increasingly implemented in the routine diagnostic work-up.

Practical recommendations

The selection of diagnostic tools in individual cases and the extent of genomic analyses in the clinical context, need to take the availability of methods as well as the present clinical situation into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    Article  Google Scholar 

  2. International Cancer Genome C, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A et al (2010) International network of cancer genome projects. Nature 464:993–998

    Article  Google Scholar 

  3. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor mutations in lung cancer. Nat Rev Cancer 7:169–181

    Article  CAS  PubMed  Google Scholar 

  4. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11:873–886

    Article  CAS  PubMed  Google Scholar 

  5. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, Pirun M, Sander C, Socci ND, Ostrovnaya I, Viale A, Heguy A, Peng L, Chan TA, Bochner B, Bajorin DF, Berger MF, Taylor BS, Solit DB (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wagle N, Grabiner BC, Van Allen EM, Hodis E, Jacobus S, Supko JG, Stewart M, Choueiri TK, Gandhi L, Cleary JM, Elfiky AA, Taplin ME, Stack EC, Signoretti S, Loda M, Shapiro GI, Sabatini DM, Lander ES, Gabriel SB, Kantoff PW, Garraway LA, Rosenberg JE (2014) Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov 4:546–553

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, Cheng AJ, Kunju LP, Siddiqui J, Tomlins SA, Wyngaard P, Sadis S, Roychowdhury S, Hussain MH, Feng FY, Zalupski MM, Talpaz M, Pienta KJ, Rhodes DR, Robinson DR, Chinnaiyan AM (2013) Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 3:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 42:587–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, Chandramohan R, Liu ZY, Won HH, Scott SN, Brannon AR, O’Reilly C et al (2015) Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn 17:251–264

    Article  CAS  PubMed  Google Scholar 

  10. Pfarr N, Stenzinger A, Penzel R, Warth A, Dienemann H, Schirmacher P, Weichert W, Endris V (2016) High-throughput diagnostic profiling of clinically actionable gene fusions in lung cancer. Genes Chromosomes Cancer 55:30–44

    Article  CAS  PubMed  Google Scholar 

  11. Jesinghaus M, Pfarr N, Endris V, Kloor M, Volckmar AL, Brandt R, Herpel E, Muckenhuber A, Lasitschka F, Schirmacher P, Penzel R, Weichert W, Stenzinger A (2016) Genotyping of colorectal cancer for cancer precision medicine: results from the IPH Center for Molecular Pathology. Genes Chromosomes Cancer 55:505–521

    Article  CAS  PubMed  Google Scholar 

  12. Schwaederle M, Parker BA, Schwab RB, Daniels GA, Piccioni DE, Kesari S, Helsten TL, Bazhenova LA, Romero J, Fanta PT, Lippman SM, Kurzrock R (2016) Precision oncology: the UC San Diego Moores Cancer Center PREDICT experience. Mol Cancer Ther 15:743–752

    Article  CAS  PubMed  Google Scholar 

  13. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, Kalyana-Sundaram S, Sam L, Balbin OA, Quist MJ, Barrette T, Everett J et al (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3:111ra21

    Article  Google Scholar 

  14. Horak P, Klink B, Heining C et al (2017) Precision oncology based on omics data: The NCT Heidelberg experience. Int J Cancer 141(5):877–886

  15. Chi KR (2016) The tumour trail left in blood. Nature 532:269–271

    Article  CAS  PubMed  Google Scholar 

  16. Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Vivancos A, Kuang Y, Ercan D, Matthews SE et al (2015) Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 21:560–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, Ponzetti A, Cremolini C, Amatu A, Lauricella C, Lamba S, Hobor S et al (2015) Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 21:795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS, Marass F, Humphray S et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

  19. Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597

    Article  CAS  PubMed  Google Scholar 

  20. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4:998–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wulfkuhle JD, Berg D, Wolff C, Langer R, Tran K, Illi J, Espina V, Pierobon M, Deng J, DeMichele A, Walch A, Bronger H et al (2012) Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin Cancer Res 18:6426–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zupa A, Improta G, Silvestri A, Pin E, Deng J, Aieta M, Musto P, Nitti D, Mammano E, Liotta L, Belluco C, Wulfkuhle J et al (2012) A pilot characterization of human lung NSCLC by protein pathway activation mapping. J Thorac Oncol 7:1755–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mueller C, Liotta LA, Espina V (2010) Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 4:461–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schuol S, Schickhardt C, Wiemann S, Bartram CR, Tanner K, Eils R, Meder B, Richter D, Glimm H, von Kalle C, Winkler EC (2015) So rare we need to hunt for them: reframing the ethical debate on incidental findings. Genome Med 7:83

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, Nava Rodrigues D, Robinson D, Omlin A, Tunariu N, Boysen G, Porta N et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373:1697–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redig AJ, Jänne PA (2015) Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol 33:975

    Article  CAS  PubMed  Google Scholar 

  27. Brower V (2015) NCI-MATCH pairs tumor mutations with matching drugs. Nat Biotechnol 33:790–791

    Article  CAS  PubMed  Google Scholar 

  28. www.asco.org/practice-research/targeted-agent-and-profiling-utilization-registry-study. Zugegriffen: 2. Juli 2017

  29. Gröschel S, Bommer M, Hutter B, Budczies J, Bonekamp D, Heining C, Horak P, Frohlich M, Uhrig S, Hubschmann D, Georg C, Richter D et al (2016) Integration of genomics and histology revises diagnosis and enables effective therapy of refractory cancer of unknown primary with PDL1 amplification. Cold Spring Harb Mol Case Stud 2:a1180

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dieter SM, Heining C, Agaimy A, Huebschmann D, Bonekamp D, Hutter B, Ehrenberg KR, Fröhlich M, Schlesner M, Scholl C, Schlemmer HP, Wolf S et al (2017) Mutant KIT as imatinib-sensitive target in metastatic sinonasal carcinoma. Ann Oncol 28:142–148

    CAS  PubMed  Google Scholar 

  31. Czink E, Heining C, Weber TF, Lasitschka F, Schemmer P, Schirmacher P, Weiss KH, Glimm H, Brors B, Weichert W, Jäger D, Fröhling S et al (2016) Durable remission under dual HER2 blockade with trastuzumab and pertuzumab in a patient with metastatic gallbladder cancer. Z Gastroenterol 54:426–430

    Article  CAS  PubMed  Google Scholar 

  32. Kordes M, Röring M, Heining C, Braun S, Hutter B, Richter D, Georg C, Scholl C, Gröschel S, Roth W, Rosenwald A, Geissinger E et al (2016) Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia 30:937–946

    Article  CAS  PubMed  Google Scholar 

  33. Chudasama P, Renner M, Straub M, Mughal SS, Hutter B, Kosaloglu Z, Schwessinger R, Scheffler M, Alldinger I, Schimmack S, Persigehl T, Kobe C et al (2017) Targeting fibroblast growth factor receptor 1 for treatment of soft-tissue sarcoma. Clin Cancer Res 23:962–973

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fröhling.

Ethics declarations

Interessenkonflikt

C. Heining, P. Horak, S. Gröschel, H. Glimm und S. Fröhling geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heining, C., Horak, P., Gröschel, S. et al. Personalisierte Onkologie. Radiologe 57, 804–811 (2017). https://doi.org/10.1007/s00117-017-0297-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-017-0297-9

Schlüsselwörter

Keywords

Navigation