Skip to main content
Log in

Funktionelle Magnetresonanztomographie der Nieren

Functional magnetic resonance imaging of the kidneys

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die funktionelle MRT der Nieren hat in den letzten Jahren zunehmend an Bedeutung gewonnen. In diesem Übersichtsartikel werden die wichtigsten funktionellen Untersuchungstechniken vorgestellt und deren potenzielle klinische Bedeutung zur Evaluation von Nieren und Transplantatnieren hervorgehoben, wobei ein besonderes Augenmerk auf die Abklärung von Nierentumoren gelegt wird.

Abstract

Interest in functional renal magnetic resonance imaging (MRI) has significantly increased in recent years. This review article provides an overview of the most important functional imaging techniques and their potential clinical applications for assessment of native and transplanted kidneys, with special emphasis on the clarification of renal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Grenier N, Basseau F, Ries M, Tyndal B, Jones R, Moonen C (2003) Functional MRI of the kidney. Abdom Imaging 28:164–175

    Article  CAS  PubMed  Google Scholar 

  2. Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43:40–48

    Article  PubMed  Google Scholar 

  3. Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414

    Article  PubMed  Google Scholar 

  4. Bokacheva L, Rusinek H, Zhang JL, Chen Q, Lee VS (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging 29:371–382

    Article  PubMed Central  PubMed  Google Scholar 

  5. Roditi G, Maki JH, Oliveira G, Michaely HJ (2009) Renovascular imaging in the NSF Era. J Magn Reson Imaging 30:1323–1334

    Article  PubMed  Google Scholar 

  6. Lee VS, Rusinek H, Bokacheva L et al (2007) Renal function measurements from MR renography and a simplified multicompartmental model. Am J Physiol Renal Physiol 292:F1548–1559

    Article  CAS  PubMed  Google Scholar 

  7. Grenier N, Mendichovszky I, de Senneville BD et al (2008) Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38:47–55

    Article  PubMed  Google Scholar 

  8. Boss A, Martirosian P, Gehrmann M et al (2007) Quantitative assessment of glomerular filtration rate with MR gadolinium slope clearance measurements: a phase I trial. Radiology 242:783–790

    Article  PubMed  Google Scholar 

  9. Mendichovszky I, Pedersen M, Frokiaer J et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931

    Article  PubMed  Google Scholar 

  10. Winter KS, Helck AD, Ingrisch M et al (2014) Dynamic contrast-enhanced magnetic resonance imaging assessment of kidney function and renal masses: single slice versus whole organ/tumor. Invest Radiol 49:720–727

    Article  CAS  PubMed  Google Scholar 

  11. Michaely HJ, Sourbron SP, Buettner C, Lodemann KP, Reiser MF, Schoenberg SO (2008) Temporal constraints in renal perfusion imaging with a 2-compartment model. Invest Radiol 43:120–128

    Article  PubMed  Google Scholar 

  12. Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging 18:714–725

    Article  PubMed  Google Scholar 

  13. Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123

    Article  PubMed  Google Scholar 

  14. Baumann D, Rudin M (2000) Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 18:587–595

    Article  CAS  PubMed  Google Scholar 

  15. Zhang JL, Rusinek H, Bokacheva L et al (2008) Functional assessment of the kidney from magnetic resonance and computed tomography renography: impulse retention approach to a multicompartment model. Magn Reson Med 59:278–288

    Article  PubMed Central  PubMed  Google Scholar 

  16. Attenberger UI, Sourbron SP, Notohamiprodjo M et al (2008) MR-based semi-automated quantification of renal functional parameters with a two-compartment model – an interobserver analysis. Eur J Radiol 65:59–65

    Article  CAS  PubMed  Google Scholar 

  17. Mendichovszky IA, Cutajar M, Gordon I (2008) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71(3):576–581

    Article  PubMed  Google Scholar 

  18. Lee VS, Rusinek H, Noz ME, Lee P, Raghavan M, Kramer EL (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227:289–294

    Article  PubMed  Google Scholar 

  19. Lim SW, Chrysochou C, Buckley DL, Kalra PA, Sourbron SP (2013) Prediction and assessment of responses to renal artery revascularization with dynamic contrast-enhanced magnetic resonance imaging: a pilot study. Am J Physiol Renal Physiol 305:F672–F678

    Article  CAS  PubMed  Google Scholar 

  20. Investigators A, Wheatley K, Ives N et al (2009) Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med 361:1953–1962

    Article  Google Scholar 

  21. Kang SK, Huang WC, Wong S et al (2013) Dynamic contrast-enhanced magnetic resonance imaging measurement of renal function in patients undergoing partial nephrectomy: preliminary experience. Invest Radiol 48:687–692

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zollner FG, Zimmer F, Klotz S, Hoeger S, Schad LR (2014) Renal perfusion in acute kidney injury with DCE-MRI: deconvolution analysis versus two-compartment filtration model. Magn Reson Imaging 32:781–785

    Article  PubMed  Google Scholar 

  23. Zollner FG, Zimmer F, Klotz S, Hoeger S, Schad LR (2015) Functional imaging of acute kidney injury at 3 Tesla: investigating multiple parameters using DCE-MRI and a two-compartment filtration model. Z Med Phys 25:58–65

    Article  PubMed  Google Scholar 

  24. Michaely HJ, Schoenberg SO, Ittrich C, Dikow R, Bock M, Guenther M (2004) Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Invest Radiol 39:698–705

    Article  PubMed  Google Scholar 

  25. Attenberger UI, Sourbron SP, Schoenberg SO et al (2010) Comprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiography. J Magn Reson Imaging 31:125–133

    Article  PubMed  Google Scholar 

  26. Szolar DH, Preidler K, Ebner F et al (1997) Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations. Magn Reson Imaging 15:727–735

    Article  CAS  PubMed  Google Scholar 

  27. Wentland AL, Sadowski EA, Djamali A, Grist TM, Becker BN, Fain SB (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16:1077–1085

    Article  PubMed Central  PubMed  Google Scholar 

  28. Yamamoto A, Zhang JL, Rusinek H et al (2011) Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260:781–789

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chandarana H, Amarosa A, Huang WC et al (2013) High temporal resolution 3D gadolinium-enhanced dynamic MR imaging of renal tumors with pharmacokinetic modeling: preliminary observations. J Magn Reson Imaging 38:802–808

    Article  PubMed  Google Scholar 

  30. Notohamiprodjo M, Sourbron S, Staehler M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31(2):490–501

    Article  PubMed  Google Scholar 

  31. Scialpi M, Brunese L, Piscioli I, Rotondo A (2009) Dynamic contrast-enhanced MR imaging for differentiation of renal cell carcinoma subtypes: myth or reality? Radiology 252:929

    Article  PubMed  Google Scholar 

  32. Sun MR, Ngo L, Genega EM et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes – correlation with pathologic findings. Radiology 250:793–802

    Article  PubMed  Google Scholar 

  33. Sevcenco S, Ponhold L, Javor D et al (2014) Three-Tesla dynamic contrast-enhanced MRI: a critical assessment of its use for differentiation of renal lesion subtypes. World J Urol 32:215–220

    Article  CAS  PubMed  Google Scholar 

  34. Flaherty KT, Rosen MA, Heitjan FH et al (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7:496–501

    Article  CAS  PubMed  Google Scholar 

  35. Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26:4572–4578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Martirosian P, Boss A, Schraml C et al (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37(Suppl 1):52–64

    Article  Google Scholar 

  37. Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  CAS  PubMed  Google Scholar 

  38. Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  CAS  PubMed  Google Scholar 

  39. Artz NS, Sadowski EA, Wentland AL et al (2011) Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging 33:1414–1421

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fenchel M, Martirosian P, Langanke J et al (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021

    Article  PubMed  Google Scholar 

  41. Lanzman RS, Wittsack HJ, Martirosian P et al (2010) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20:1485–1491

    Article  PubMed  Google Scholar 

  42. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361

    Article  PubMed  Google Scholar 

  43. Heusch P, Wittsack HJ, Blondin D et al (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 40:84–89

    Article  PubMed  Google Scholar 

  44. Artz NS, Wentland AL, Sadowski EA et al (2011) Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model. Invest Radiol 46:124–131

    Article  PubMed Central  PubMed  Google Scholar 

  45. Winter JD, St Lawrence KS, Cheng HL (2011) Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:608–615

    Article  PubMed  Google Scholar 

  46. Artz NS, Sadowski EA, Wentland AL et al (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29:74–82

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hueper K, Gueler F, Brasen JH et al (2015) Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol 308:F1444–F1451

    Article  PubMed  CAS  Google Scholar 

  48. Lanzman RS, Robson PM, Sun MR et al (2012) Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology 265:799–808

    Article  PubMed Central  PubMed  Google Scholar 

  49. Liu YP, Song R, Liang C, Chen X, Liu B (2012) Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury. Am J Physiol Renal Physiol 303:F551–F558

    Article  CAS  PubMed  Google Scholar 

  50. Tan H, Thacker J, Franklin T, Prasad PV (2015) Sensitivity of arterial spin labeling perfusion MRI to pharmacologically induced perfusion changes in rat kidneys. J Magn Reson Imaging 41:1124–1128

    Article  PubMed  Google Scholar 

  51. Pedrosa I, Rafatzand K, Robson P et al (2011) Arterial spin labeling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience. Eur Radiol 265(3):799–808

    Google Scholar 

  52. Schor-Bardach R, Alsop DC, Pedrosa I et al (2009) Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology 251:731–742

    Article  PubMed Central  PubMed  Google Scholar 

  53. de Bazelaire C, Alsop DC, George D et al (2008) Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK787/ZK 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res 14:5548–5554

    Article  PubMed  Google Scholar 

  54. Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76:337–347

    Article  PubMed  Google Scholar 

  55. Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25–38

    Article  PubMed  Google Scholar 

  56. Wittsack HJ, Lanzman RS, Mathys C, Janssen H, Modder U, Blondin D (2010) Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 64:616–622

    PubMed  Google Scholar 

  57. Zhang JL, Sigmund EE, Chandarana H et al (2010) Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 254:783–792

    Article  PubMed Central  PubMed  Google Scholar 

  58. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  59. Heusch P, Wittsack HJ, Heusner T et al (2013) Correlation of biexponential diffusion parameters with arterial spin-labeling perfusion MRI: results in transplanted kidneys. Invest Radiol 48:140–144

    Article  PubMed  Google Scholar 

  60. Wittsack HJ, Lanzman RS, Quentin M et al (2012) Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Invest Radiol 47:226–230

    Article  PubMed  Google Scholar 

  61. Heusch P, Wittsack HJ, Pentang G et al (2013) Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiol 54:1210–1217

    Article  PubMed  Google Scholar 

  62. Chandarana H, Kang SK, Wong S et al (2012) Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol 47:688–696

    Article  PubMed  Google Scholar 

  63. Rosenkrantz AB, Niver BE, Fitzgerald EF, Babb JS, Chandarana H, Melamed J (2010) Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol 195:W344–W351

    Article  PubMed  Google Scholar 

  64. Sandrasegaran K, Sundaram CP, Ramaswamy R et al (2010) Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentgenol 194:438–445

    Article  PubMed  Google Scholar 

  65. Tanaka H, Yoshida S, Fujii Y et al (2011) Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma. Int J Urol 18:727–730

    Article  PubMed  Google Scholar 

  66. Taouli B, Thakur RK, Mannelli L et al (2009) Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 251:398–407

    Article  PubMed  Google Scholar 

  67. Wang H, Cheng L, Zhang X et al (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257:135–143

    Article  PubMed  Google Scholar 

  68. Zhang J, Tehrani YM, Wang L, Ishill NM, Schwartz LH, Hricak H (2008) Renal masses: characterization with diffusion-weighted MR imaging – a preliminary experience. Radiology 247:458–464

    Article  PubMed  Google Scholar 

  69. Sevcenco S, Heinz-Peer G, Ponhold L et al (2014) Utility and limitations of 3-Tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors. Eur J Radiol 83:909–913

    Article  CAS  PubMed  Google Scholar 

  70. Lassel EA, Rao R, Schwenke C, Schoenberg SO, Michaely HJ (2014) Diffusion-weighted imaging of focal renal lesions: a meta-analysis. Eur Radiol 24:241–249

    Article  CAS  PubMed  Google Scholar 

  71. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A (2013) Diffusion-weighted MRI in inflammatory renal lesions: all that glitters is not RCC! Eur Radiol 23:272–279

    Article  PubMed  Google Scholar 

  72. Henninger B, Reichert M, Haneder S, Schoenberg SO, Michaely HJ (2013) Value of diffusion-weighted MR imaging for the detection of nephritis. Sci World J 2013:1–8

    Article  Google Scholar 

  73. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917

    Article  PubMed  Google Scholar 

  74. Togao O, Doi S, Kuro-o M, Masaki T, Yorioka N, Takahashi M (2010) Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 255:772–780

    Article  PubMed Central  PubMed  Google Scholar 

  75. Carbone SF, Gaggioli E, Ricci V, Mazzei F, Mazzei MA, Volterrani L (2007) Diffusion-weighted magnetic resonance imaging in the evaluation of renal function: a preliminary study. Radiol Med (Torino) 112:1201–1210

    Article  CAS  Google Scholar 

  76. Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takahashi M (1999) Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 9:832–837

    Article  CAS  PubMed  Google Scholar 

  77. Park SY, Jung SE, Jeong WK, Kim CK, Park BK, Choi D (2015) Renal function impairment in liver cirrhosis: preliminary results with diffusion-weighted imaging at 3 T. AJR Am J Roentgenol 204:1024–1030

    Article  PubMed  Google Scholar 

  78. Yang L, Li XM, Zhao S, Hu YJ, Liu RB (2015) Diffusion-weighted imaging of the kidneys and its relationship with residual renal function in continuous ambulatory peritoneal dialysis patients. AJR Am J Roentgenol 204:1008–1012

    Article  PubMed  Google Scholar 

  79. Blondin D, Lanzman RS, Klasen J et al (2011) Diffusion-attenuated MRI signal of renal allografts: comparison of two different statistical models. AJR Am J Roentgenol 196:W701–W705

    Article  PubMed  Google Scholar 

  80. Blondin D, Lanzman RS, Mathys C et al (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. Rofo 181:1162–1167

    Article  CAS  PubMed  Google Scholar 

  81. Eisenberger U, Binser T, Thoeny HC, Boesch C, Frey FJ, Vermathen P (2014) Living renal allograft transplantation: diffusion-weighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology 270:800–808

    Article  PubMed  Google Scholar 

  82. Eisenberger U, Thoeny HC, Binser T et al (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20:1374–1383

    Article  PubMed  Google Scholar 

  83. Notohamiprodjo M, Dietrich O, Horger W et al (2010) Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 Tesla. Invest Radiol 45:245–254

    Article  PubMed  Google Scholar 

  84. Heusch P, Wittsack HJ, Kropil P et al (2013) Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T. J Magn Reson Imaging 37:233–236

    Article  PubMed  Google Scholar 

  85. Notohamiprodjo M, Chandarana H, Mikheev A et al (2015) Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn Reson Med 73:1526–1532

    Article  PubMed  Google Scholar 

  86. Gaudiano C, Clementi V, Busato F et al (2013) Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol 23:1678–1685

    Article  PubMed  Google Scholar 

  87. Liu Z, Xu Y, Zhang J et al (2015) Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 25:652–660

    Article  PubMed  Google Scholar 

  88. Hueper K, Hartung D, Gutberlet M et al (2012) Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol 47:430–437

    Article  PubMed  Google Scholar 

  89. Lu L, Sedor JR, Gulani V et al (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482

    Article  PubMed Central  PubMed  Google Scholar 

  90. Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21(11):2427–2433

    Article  PubMed  Google Scholar 

  91. Lanzman RS, Ljimani A, Pentang G et al (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 266:218–225

    Article  PubMed  Google Scholar 

  92. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  93. Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275

    Article  CAS  PubMed  Google Scholar 

  94. dos Santos EA, Li LP, Ji L, Prasad PV (2007) Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest Radiol 42:157–162

    Article  PubMed Central  PubMed  Google Scholar 

  95. Khatir DS, Pedersen M, Jespersen B, Buus NH (2014) Reproducibility of MRI renal artery blood flow and BOLD measurements in patients with chronic kidney disease and healthy controls. J Magn Reson Imaging 40:1091–1098

    Article  PubMed  Google Scholar 

  96. Li LP, Storey P, Pierchala L, Li W, Polzin J, Prasad P (2004) Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging 19:610–616

    Article  PubMed Central  PubMed  Google Scholar 

  97. Simon-Zoula SC, Hofmann L, Giger A et al (2006) Non-invasive monitoring of renal oxygenation using BOLD-MRI: a reproducibility study. NMR Biomed 19:84–89

    Article  PubMed  Google Scholar 

  98. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  99. Djamali A, Sadowski EA, Muehrer RJ et al (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 292:F513–F522

    Article  CAS  PubMed  Google Scholar 

  100. Han F, Xiao W, Xu Y et al (2008) The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant 23:2666–2672

    Article  PubMed  Google Scholar 

  101. Mathys C, Blondin D, Wittsack HJ et al (2011) T2’ imaging of native kidneys and renal allografts - a feasibility study. Rofo 183:112–119

    Article  CAS  PubMed  Google Scholar 

  102. Sadowski EA, Fain SB, Alford SK et al (2005) Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 236:911–919

    Article  PubMed  Google Scholar 

  103. Sadowski EA, Djamali A, Wentland AL et al (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28:56–64

    Article  PubMed Central  PubMed  Google Scholar 

  104. Tumkur SM, Vu AT, Li LP, Pierchala L, Prasad PV (2006) Evaluation of intra-renal oxygenation during water diuresis: a time-resolved study using BOLD MRI. Kidney Int 70:139–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Epstein FH, Prasad P (2000) Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int 57:2080–2083

    Article  CAS  PubMed  Google Scholar 

  106. Prasad PV, Epstein FH (1999) Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int 55:294–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Epstein FH, Veves A, Prasad PV (2002) Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 25:575–578

    Article  PubMed  Google Scholar 

  108. Ries M, Basseau F, Tyndal B et al (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging 17:104–113

    Article  PubMed  Google Scholar 

  109. Hofmann L, Simon-Zoula S, Nowak A et al (2006) BOLD-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int 70:144–150

    Article  CAS  PubMed  Google Scholar 

  110. Thoeny HC, Kessler TM, Simon-Zoula S et al (2008) Renal oxygenation changes during acute unilateral ureteral obstruction: assessment with blood oxygen level-dependent mr imaging – initial experience. Radiology 247:754–761

    Article  PubMed  Google Scholar 

  111. Inoue T, Kozawa E, Okada H et al (2011) Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol 22:1429–1434

    Article  PubMed Central  PubMed  Google Scholar 

  112. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI (2012) Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int 81:684–689

    Article  CAS  PubMed  Google Scholar 

  113. Dagher AP, Aletras A, Choyke P, Balaban RS (2000) Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging 12:745–748

    Article  CAS  PubMed  Google Scholar 

  114. Longo DL, Busato A, Lanzardo S, Antico F, Aime S (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70:859–864

    Article  CAS  PubMed  Google Scholar 

  115. Muller-Lutz A, Khalil N, Schmitt B et al (2014) Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. MAGMA 27:477–485

    Article  PubMed  CAS  Google Scholar 

  116. Haneder S, Konstandin S, Morelli JN, Schad LR, Schoenberg SO, Michaely HJ (2013) Assessment of the renal corticomedullary (23)Na gradient using isotropic data sets. Acad Radiol 20:407–413

    Article  PubMed  Google Scholar 

  117. Moon CH, Furlan A, Kim JH, Zhao T, Shapiro R, Bae KT (2014) Quantitative sodium MR imaging of native versus transplanted kidneys using a dual-tuned proton/sodium (1H/23Na) coil: initial experience. Eur Radiol 24:1320–1326

    Article  PubMed  Google Scholar 

  118. Cornelis F, Tricaud E, Lasserre AS et al (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eur Radiol 24:1068–1080

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Lanzman.

Ethics declarations

Interessenkonflikt

R.S. Lanzman, M. Notohamiprodjo und H.J. Wittsack geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzman, R.S., Notohamiprodjo, M. & Wittsack, H. Funktionelle Magnetresonanztomographie der Nieren. Radiologe 55, 1077–1087 (2015). https://doi.org/10.1007/s00117-015-0044-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-0044-z

Schlüsselwörter

Keywords

Navigation