Skip to main content

Advertisement

Log in

Präklinische Bildgebung im Tiermodell bei Strahlentherapie

Preclinical imaging in animal models of radiation therapy

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die moderne Strahlentherapie profitiert maßgeblich von einer detaillierten wie auch funktionellen prätherapeutischen Bildgebung.

Radiologische Standardverfahren

Die üblicherweise prätherapeutisch eingesetzten radiologischen Standardverfahren wie die Computertomographie liefern zwar hochwertige morphologische Details, jedoch keine funktionelle Information.

Methodische Innovationen

Es ist somit ein zunehmender Bedarf an funktionellen und molekularen Bildgebungsmodalitäten feststellbar, mit denen ergänzend zur morphologischen Bildgebung auch biologisch-funktionelle Informationen über den Tumor zur Verfügung gestellt werden.

Leistungsfähigkeit

Die dynamische kontrastmittelverstärkte MRT-, CT- oder ultraschallbasierte Perfusionsbildgebung sowie Hybridverfahren wie PET/CT oder MRT/PET haben das Potenzial, vitale und/oder perfundierte Tumoranteile zu identifizieren und abzugrenzen, um so eine gezielte Strahlentherapie zu optimieren. Ziel ist eine genauere Abgrenzung und Behandlung des Tumors bei gleichzeitiger Reduzierung der Dosis und Schonung des umliegenden gesunden Gewebes.

Bewertung

In der Entwicklung neuer bildgebender Methoden für die Planung einer individualisierten Strahlentherapie kommt der präklinischen, wissenschaftlichen Bildgebung und Forschung eine besondere Rolle zu, da nur in einem präklinischen Setting, also in tierexperimentellen Tumormodellen, die Möglichkeiten einer multimodalen Bildgebung ausreichend genau evaluiert und weiterentwickelt werden können.

Empfehlung für die Praxis

Neue funktionelle bildgebende Methoden werden für die Überwachung einer frühen Therapieantwort („early response“) unter Strahlentherapie oder für die Darstellung der Wertigkeit neuer Kombinationstherapien (z. B. Antiangiogenese plus Strahlentherapie) eine zunehmende Rolle spielen.

Abstract

Clinical/methodical issue

Modern radiotherapy benefits from precise and targeted diagnostic and pretherapeutic imaging.

Standard radiological methods

Standard imaging modalities, such as computed tomography (CT) offer high morphological detail but only limited functional information on tumors.

Methodical innovations

Novel functional and molecular imaging modalities provide biological information about tumors in addition to detailed morphological information.

Performance

Perfusion magnetic resonance imaging (MRI) CT or ultrasound-based perfusion imaging as well as hybrid modalities, such as positron emission tomography (PET) CT or MRI-PET have the potential to identify and precisely delineate viable and/or perfused tumor areas, enabling optimization of targeted radiotherapy. Functional information on tissue microcirculation and/or glucose metabolism allow a more precise definition and treatment of tumors while reducing the radiation dose and sparing the surrounding healthy tissue.

Achievements

In the development of new imaging methods for planning individualized radiotherapy, preclinical imaging and research plays a pivotal role, as the value of multimodality imaging can only be assessed, tested and adequately developed in a preclinical setting, i.e. in animal tumor models.

Practical recommendations

New functional imaging modalities will play an increasing role for the surveillance of early treatment response during radiation therapy and in the assessment of the potential value of new combination therapies (e.g. combining anti-angiogenic drugs with radiotherapy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Neff T, Kiessling F, Brix G et al (2005) An optimized workflow for the integration of biological information into radiotherapy planning: experiences with T1w DCE-MRI. Phys Med Biol 50:4209–4223

    Article  CAS  PubMed  Google Scholar 

  2. Khoo VS, Joon DL (2006) New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 79(1):2–15

    Article  Google Scholar 

  3. MacManus M, Nestle U, Rosenzweig KE et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91:85–94

    Article  PubMed  Google Scholar 

  4. Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25

    Article  PubMed  Google Scholar 

  5. Cyran CC, Von Einem J, Paprottka PM et al (2011) Dynamic contrast-enhanced CT imaging biomarkers correlated with immunohistochemistry for monitoring the effects of sorafenib on experimental prostate carcinomas. Invest Radiol (in press)

  6. Cyran CC, Fu Y, Raatschen HJ et al (2008) New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging 27:581–589

    Article  PubMed  Google Scholar 

  7. Turetschek K, Floyd E, Helbich T et al (2001) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242

    Article  CAS  PubMed  Google Scholar 

  8. Koukourakis MI (2001) Tumour angiogenesis and response to radiotherapy. Anticancer Res 21:4285–4300

    CAS  PubMed  Google Scholar 

  9. Cheng Z, De Jesus OP, Namavari M et al (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 49:804–813

    Article  CAS  PubMed  Google Scholar 

  10. Patel D, Kell A, Simard B et al (2011) The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials 32:1167–1176

    Article  CAS  PubMed  Google Scholar 

  11. Cyran CC, Paprottka PM, Von Einem J et al (2010) Perfusion MRI for monitoring sorafenib effect on experimental prostate carcinomas: a validation study. AJR Am J Roentgenol (in press)

  12. Bumb A, Regino CA, Perkins MR et al (2010) Preparation and characterization of a magnetic and optical dual-modality molecular probe. Nanotechnology 21:175704

    Article  CAS  PubMed  Google Scholar 

  13. Makowski MR, Wiethoff AJ, Blume U et al (2011) Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 17:383–388

    Article  CAS  PubMed  Google Scholar 

  14. Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348

    Article  CAS  PubMed  Google Scholar 

  15. Frahm J, Michaelis T, Merboldt KD et al (1989) Localized NMR spectroscopy in vivo. Progress and problems. NMR Biomed 2:188–195

    Article  CAS  PubMed  Google Scholar 

  16. Majos C, Alonso J, Aguilera C et al (2002) Adult primitive neuroectodermal tumor: proton MR spectroscopic findings with possible application for differential diagnosis. Radiology 225:556–566

    Article  CAS  PubMed  Google Scholar 

  17. Stadlbauer A, Gruber S, Nimsky C et al (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958–969

    Article  PubMed  Google Scholar 

  18. Kuroda K, Suzuki Y, Ishihara Y, Okamoto K (1996) Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn Reson Med 35:20–29

    Article  CAS  PubMed  Google Scholar 

  19. Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76:304–313

    Article  PubMed  Google Scholar 

  20. Cyran CC, Paprottka PM, Schwarz B et al (2011) Perfusion MRI for monitoring sorafenib effect on experimental prostate carcinomas: a validation study. AJR Am J Roentgenol (in press)

  21. Fung SH, Roccatagliata L, Gonzalez RG, Schaefer PW (2011) MR diffusion imaging in ischemic stroke. Neuroimaging Clin North Am 21:345–377

    Article  Google Scholar 

  22. Choi SH, Paeng JC, Sohn CH et al (2011) Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion mri in head and neck cancer. J Nucl Med 52(7):1056–1062

    Article  PubMed  Google Scholar 

  23. Inglese M, Bester M (2010) Diffusion imaging in multiple sclerosis: research and clinical implications. NMR Biomed 23:865–872

    Article  CAS  PubMed  Google Scholar 

  24. Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645–2648

    Article  CAS  PubMed  Google Scholar 

  25. Olsson LE, Chai CM, Axelsson O et al (2006) MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance. Magn Reson Med 55:731–737

    Article  PubMed  Google Scholar 

  26. Svensson J, Mansson S, Johansson E et al (2003) Hyperpolarized 13C MR angiography using trueFISP. Magn Reson Med 50:256–262

    Article  PubMed  Google Scholar 

  27. Golman K, Zandt RI, Lerche M et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860

    Article  CAS  PubMed  Google Scholar 

  28. Mansson S, Johansson E, Magnusson P et al (2006) 13C imaging-a new diagnostic platform. Eur Radiol 16:57–67

    Article  PubMed  Google Scholar 

  29. Cyran CC, Von Einem JC, Paprottka PM et al (2011) Dynamic contrast-enhanced computed tomography imaging biomarkers correlated with immunohistochemistry for monitoring the effects of sorafenib on experimental prostate carcinomas. Invest Radiol, in press

  30. Ophir J, Cespedes I, Ponnekanti H et al (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    Article  CAS  PubMed  Google Scholar 

  31. De Zordo T, Chhem R, Smekal V et al (2010) Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall Med 31:394–400

    Article  Google Scholar 

  32. Krouskop TA, Wheeler TM, Kallel F et al (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20:260–274

    CAS  PubMed  Google Scholar 

  33. Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    Article  PubMed  Google Scholar 

  34. Lorenz A, Ermert H, Sommerfeld HJ et al (2000) Ultrasound elastography of the prostate. A new technique for tumor detection. Ultraschall Med 21:8–15

    Article  CAS  PubMed  Google Scholar 

  35. Van Vledder MG, Boctor EM, Assumpcao LR et al (2010) Intra-operative ultrasound elasticity imaging for monitoring of hepatic tumour thermal ablation. HPB (Oxford) 12:717–723

    Google Scholar 

  36. Zhang D, Zhang S, Wan M, Wang S (2011) A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection. Ultrasonics 51:857–869

    Article  PubMed  Google Scholar 

  37. Chenot J, Melodelima D, N’Djin WA et al (2010) Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results. Phys Med Biol 55:3131–3144

    Article  CAS  PubMed  Google Scholar 

  38. Cui LG, Shao JH, Wang JR et al (2009) Ultrasound elastography of ethanol-induced hepatic lesions: in vitro study. Chin Med Sci J 24:81–85

    Article  CAS  PubMed  Google Scholar 

  39. Hoyt K, Forsberg F, Merritt CR et al (2005) In vivo elastographic investigation of ethanol-induced hepatic lesions. Ultrasound Med Biol 31:607–612

    Article  PubMed  Google Scholar 

  40. Clevert D-A, Sommer WH, Helck A, Reiser M (2011) Duplex and contrast enhanced ultrasound (CEUS) in evaluation of in-stent restenosis after carotid stenting. Clin Hemorheol Microcirc 48:199–208

    PubMed  Google Scholar 

  41. Clevert D-A, Minaifar N, Kopp R et al (2009) Imaging of endoleaks after endovascular aneurysm repair (EVAR) with contrast-enhanced ultrasound (CEUS). A pictorial comparison with CTA. Clin Hemorheol Microcirc 41:151–168

    PubMed  Google Scholar 

  42. Helck A, Sommer WH, Wessely M et al (2011) Benefit of contrast enhanced ultrasound for detection of ischaemic lesions and arterio venous fistulas in renal transplants – a feasibility study. Clin Hemorheol Microcirc 48:149–160

    CAS  PubMed  Google Scholar 

  43. Clevert D-A, Sommer WH, Helck A et al (2011) Improved carotid atherosclerotic plaques imaging with contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc 48:141–148

    CAS  PubMed  Google Scholar 

  44. Clevert D-A, Helck A, Paprottka PM et al (2011) Latest developments in ultrasound of the liver. Radiologe 51:661–670

    Article  PubMed  Google Scholar 

  45. Zengel P, Schrotzlmair F, Kramer M et al (2011) Management of salivary gland diseases with contrast-enhanced ultrasound. Radiologe 51:490–496

    Article  CAS  PubMed  Google Scholar 

  46. Clevert D-A, Helck A, Paprottka PM et al (2011) Contrast-enhanced ultrasound imaging of the carotid artery. Radiologe 51:483–489

    Article  PubMed  Google Scholar 

  47. Jung EM, Uller W, Stroszczynski C, Clevert D-A (2011) Contrast-enhanced sonography. Therapy control of radiofrequency ablation and transarterial chemoembolization of hepatocellular carcinoma. Radiologe 51:462–468

    Article  CAS  PubMed  Google Scholar 

  48. Schwarz F, Sommer WH, Reiser M, Clevert D-A (2011) Contrast-enhanced sonography for blunt force abdominal trauma. Radiologe 51:475–482

    Article  CAS  PubMed  Google Scholar 

  49. Greis C (2011) Summary of technical principles of contrast sonography and future perspectives. Radiologe 51:456–461

    Article  CAS  PubMed  Google Scholar 

  50. Greis C (2009) Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc 43:1–9

    PubMed  Google Scholar 

  51. Paprottka PM, Zengel P, Ingrisch M et al (2011) Contrast-enhanced ultrasound in animal models. Radiologe 51:506–513

    Article  CAS  PubMed  Google Scholar 

  52. Van Persijn van Meerten EL, Gelderblom H, Bloem JL (2010) RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline. Eur Radiol 20:1456–1467

    Article  Google Scholar 

  53. Topp KA, Zachary JF, O’Brien WD Jr (2001) Quantifying B-mode images of in vivo rat mammary tumors by the frequency dependence of backscatter. J Ultrasound Med 20:605–612

    CAS  PubMed  Google Scholar 

  54. Paprottka PM, Cyran CC, Zengel P et al (2010) Non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Contrast mixed mode examination vs. only contrast enhanced ultrasound examination. Clin Hemorheol Microcirc 46:149–158

    CAS  PubMed  Google Scholar 

  55. Stieger SM, Bloch SH, Foreman O et al (2006) Ultrasound assessment of angiogenesis in a matrigel model in rats. Ultrasound Med Biol 32:673–681

    Article  PubMed  Google Scholar 

  56. Lassau N, Chami L, Chebil M et al (2011) Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 11:18–24

    PubMed  Google Scholar 

  57. Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49:1–4

    Article  PubMed  Google Scholar 

  58. Backer MV, Gaynutdinov TI, Patel V et al (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429

    Article  CAS  PubMed  Google Scholar 

  59. Deliolanis N, Lasser T, Hyde D et al (2007) Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections. Opt Lett 32:382–384

    Article  PubMed  Google Scholar 

  60. Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8:757–760

    Article  CAS  PubMed  Google Scholar 

  61. Zavattini G, Vecchi S, Mitchell G et al (2006) A hyperspectral fluorescence system for 3D in vivo optical imaging. Phys Med Biol 51:2029–2043

    Article  CAS  PubMed  Google Scholar 

  62. Ntziachristos V (2011) Clinical translation of optical and optoacoustic imaging. Philos Transact A Math Phys Eng Sci 369:4666–4678

    Article  PubMed  Google Scholar 

  63. Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3:41–46

    Article  CAS  PubMed  Google Scholar 

  64. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5–23

    Article  Google Scholar 

  65. Kim MJ (2011) Current limitations and potential breakthroughs for the early diagnosis of hepatocellular carcinoma. Gut Liver 5:15–21

    Article  PubMed  Google Scholar 

  66. Cyran CC, Sennino B, Chaopathomkul B et al (2008) Magnetic resonance imaging assays for dimethyl sulfoxide effect on cancer vasculature. Invest Radiol 43:298–305

    Article  CAS  PubMed  Google Scholar 

  67. Cyran CC, Sennino B, Chaopathomkul B et al (2009) Magnetic resonance imaging for monitoring the effects of thalidomide on experimental human breast cancers. Eur Radiol 19:121–131

    Article  PubMed  Google Scholar 

  68. Cyran CC, Sennino B, Fu Y et al (2011) Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF). Eur J Radiol [Epub ahead of print]

  69. Sipkins DA et al (1998) Detection of tumor angiogenesis in vivo by alphavbeta3-targeted magnetic resonance imaging. Nat Med 4(5):623–626

    Article  CAS  PubMed  Google Scholar 

  70. Winter PM et al (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63(18):5838–5843

    CAS  PubMed  Google Scholar 

  71. Brockenbrough JS et al (2012) Kinetic analysis of 18-F-FLT PET in lung tumors. J Nucl Med [Epub ahead of printj

  72. Lopci E et al (2010) Imaging with non-FDG PET tracers: outlook for current clinical applications. lnsights Imaging 1:373–385

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nikolaou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaou, K., Cyran, C., Lauber, K. et al. Präklinische Bildgebung im Tiermodell bei Strahlentherapie. Radiologe 52, 252–262 (2012). https://doi.org/10.1007/s00117-011-2194-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-011-2194-y

Schlüsselwörter

Keywords

Navigation