Skip to main content
Log in

Simulation des Blutflusses in der abdominellen Aorta

Die numerische Simulation des Blutflusses in abdominellen Aortenaneurysmen vor und nach Intervention

Simulation of blood flow within the abdominal aorta

Computational fluid dynamics in abdominal aortic aneurysms before and after interventions

  • Leitthema: Aorta
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Das Ziel der numerischen Simulation des Blutflusses in der Aorta ist, die Mechanik der Entstehung von Aortenaneurysmen im Hinblick auf das Rupturrisiko zu untersuchen und die Wirkungen interventioneller Maßnahmen zu beschreiben.

Die Grundlage der numerischen Simulation sind virtuelle Modelle von Gefäßen und die physikalischen Eigenschaften der Gefäßbestandteile, des Blutes und der Strömung. Basierend auf diesen Angaben werden mit Hilfe numerischer Methoden die strömungsmechanischen Probleme des Blutflusses näherungsweise gelöst. Die Ergebnisse können dann quantitativ und qualitativ dargestellt werden.

Die Ergebnisse der numerischen Flusssimulation zeigen, dass in abdominellen Aortenaneurysmen die Höhe des Wanddrucks, der von entscheidender Bedeutung für das Rupturrisiko ist, von verschiedenen Faktoren, wie z. B. der Lage des Wandthrombus, abhängt.

In Modellen mit Stentgrafts wurden mit Hilfe der numerischen Simulation Faktoren, welche die Stentgraftmigration beeinflussen, untersucht.

Obwohl die numerische Simulation des Blutflusses noch einige Limitationen aufweist, zeigen aktuelle Studien, dass die Methode das Potenzial hat, um in Zukunft eine dedizierte Beurteilung des Rupturrisikos von Aortenaneurysmen vorzunehmen.

Abstract

The goal of numeric analysis of aortic blood flow is to evaluate the mechanisms leading to an aortic aneurysm with regard to the risk of a rupture and to describe the effect of interventional therapy. Numeric analysis is based on virtual models of vascular structures and the physical characteristics of the vessel wall, of blood as fluidum, and the blood flow. Using this information, numeric analysis solves the appropriate equations. The results can be displayed quantitatively and qualitatively.

The results of numeric flow simulation show that in abdominal aortic aneurysms the wall pressure, which is of vital importance for the risk of rupture, depends on several factors, one being the location of the intraluminal thrombus.

In models of aneurysms after stent grafting, numeric analysis can be used to evaluate factors leading to stent migration.

Although numeric analysis of aortic blood flow still has several limitations, recent studies have shown that this method has the potential for improved estimation of the rupture risk of aortic aneurysms in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Alcorn HG, Wolfson SK jr, Sutton-Tyrrell K et al. (1996) Risk factors for abdominal aortic aneurysms in older adults enrolled in The Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 16: 963–970

    PubMed  CAS  Google Scholar 

  2. Newman AB, Arnold AM, Burke GL et al. (2001) Cardiovascular disease and mortality in older adults with small abdominal aortic aneurysms detected by ultrasonography: the cardiovascular health study. Ann Intern Med 134: 182–190

    PubMed  CAS  Google Scholar 

  3. Di Martino ES, Guadagni G, Fumero A et al. (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23: 647–655

    Article  Google Scholar 

  4. Scott RA, Ashton HA, Lamparelli MJ et al. (1999) A 14-year experience with 6 cm as a criterion for surgical treatment of abdominal aortic aneurysm. Br J Surg 86: 1317–1321

    Article  PubMed  CAS  Google Scholar 

  5. Nicholls SC, Gardner JB, Meissner MH, Johansen HK (1998) Rupture in small abdominal aortic aneurysms. J Vasc Surg 28: 884–888

    Article  PubMed  CAS  Google Scholar 

  6. Valentine RJ, Decaprio JD, Castillo JM et al. (2000) Watchful waiting in cases of small abdominal aortic aneurysms-appropriate for all patients? J Vasc Surg 32: 441–448; discussion 448–450

    Article  PubMed  CAS  Google Scholar 

  7. Fillinger MF, Raghavan ML, Marra SP et al. (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36: 589–597

    Article  PubMed  Google Scholar 

  8. Finol EA, Keyhani K, Amon CH (2003) The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions. J Biomech Eng 125: 207–217

    Article  PubMed  CAS  Google Scholar 

  9. Raghavan ML, Vorp DA, Federle MP et al. (2000) Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31: 760–769

    Article  PubMed  CAS  Google Scholar 

  10. Li Z, Kleinstreuer C (2005) Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med Eng Phys 27: 369–382

    Article  PubMed  Google Scholar 

  11. Li Z, Kleinstreuer C (2005) Fluid-structure interaction effects on sac-blood pressure and wall stress in a stented aneurysm. J Biomech Eng 127: 662–671

    Article  PubMed  CAS  Google Scholar 

  12. Liffman K, Lawrence-Brown MM, Semmens JB et al. (2001) Analytical modeling and numerical simulation of forces in an endoluminal graft. J Endovasc Ther 8: 358–371

    Article  PubMed  CAS  Google Scholar 

  13. Mohan IV, Harris PL, van Marrewijk CJ et al. (2002) Factors and forces influencing stent-graft migration after endovascular aortic aneurysm repair. J Endovasc Ther 9: 748–755

    Article  PubMed  Google Scholar 

  14. Frauenfelder T, Lotfey M, Boehm T, Wildermuth S (2006) Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Intervent Radiol 29: 613–623

    Article  PubMed  Google Scholar 

  15. Anderson JD (2006) Computational fluid dynamics. The basics with applications, 6th edn. McGraw Hill, New York

  16. Long Q, Xu XY, Bourne M, Griffith TM (2000) Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn Reson Med 43: 565–576

    Article  PubMed  CAS  Google Scholar 

  17. Lorensen WE, Cline HE (1987) Marching cubes: a high-resolution 3D surface construction algorithm. Comput Graph 21: 163–169

    Article  Google Scholar 

  18. Scotti CM, Shkolnik AD, Muluk SC, Finol EA (2005) Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online 4: 64

    Article  PubMed  Google Scholar 

  19. Scotti CMF, Finol EA (2007) Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study. Comput Struct 85: 1097–1113

    Article  Google Scholar 

  20. Bonert M, Leask RL, Butany J et al. (2003) The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta. Biomed Eng Online 2: 18

    Article  PubMed  Google Scholar 

  21. Simao da Silva E, Rodrigues AJ, Magalhaes Castro de Tolosa E et al. (2000) Morphology and diameter of infrarenal aortic aneurysms: a prospective autopsy study. Cardiovasc Surg 8: 526–532

    Article  Google Scholar 

  22. Khanafer KM, Gadhoke P, Berguer R, Bull JL (2006) Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood. Biorheology 43: 661–679

    PubMed  Google Scholar 

  23. Zarins CK, Bloch DA, Crabtree T et al. (2003) Stent graft migration after endovascular aneurysm repair: importance of proximal fixation. J Vasc Surg 38: 1264–1272; discussion 1272

    Article  PubMed  Google Scholar 

  24. Resch T, Malina M, Lindblad B et al. (2000) The impact of stent design on proximal stent-graft fixation in the abdominal aorta: an experimental study. Eur J Vasc Endovasc Surg 20: 190–195

    Article  PubMed  CAS  Google Scholar 

  25. Howell BA, Kim T, Cheer A et al. (2007) Computational fluid dynamics within bifurcated abdominal aortic stent-grafts. J Endovasc Ther 14: 138–143

    Article  PubMed  Google Scholar 

  26. Sternbergh WC 3rd, Money SR, Greenberg RK, Chuter TA (2004) Influence of endograft oversizing on device migration, endoleak, aneurysm shrinkage, and aortic neck dilation: results from the Zenith Multicenter Trial. J Vasc Surg 39: 20–26

    Article  PubMed  Google Scholar 

  27. Juchems MS, Pless D, Fleiter TR et al. (2004) [Non-invasive, multi detector row (MDR) CT based computational fluid dynamics (CFD) analysis of hemodynamics in infrarenal abdominal aortic aneurysm (AAA) before and after endovascular repair]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176: 56–61

    Article  PubMed  CAS  Google Scholar 

  28. Li Z, Kleinstreuer C (2006) Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model. J Biomech 39: 2573–2582

    Article  PubMed  CAS  Google Scholar 

  29. Egelhoff CJ, Budwig RS, Elger DF et al. (1999) Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. J Biomech 32: 1319–1329

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Frauenfelder.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frauenfelder, T., Boutsianis, E., Alkadhi , H. et al. Simulation des Blutflusses in der abdominellen Aorta. Radiologe 47, 1021–1028 (2007). https://doi.org/10.1007/s00117-007-1576-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-007-1576-7

Schlüsselwörter

Keywords

Navigation